Да, это так. Но можно просто увеличить длительность (по возможности), тогда колокольчик станет уже и не будет закрывать соседние мелкие гармоники. А окно запортит и «хорошую» гармонику.
Не только бытовой сети. Во многих случаях период может быть известен, например тихоходный вал редуктора делает один оборот, и на этом обороте укладывается энное количество оборотов промежуточных звеньев.
Или электродвигатель вращает передаточный механизм с известной скоростью и т.д.
А с какой целью необходимо получить спектральное распределение? Чтобы посмотреть как энергия распределяется по частоте? Так это одна задача. А выделить составляющие сигнала — это другая задача.
По моему мнению для анализа конечного сигнала целесообразно применять разложение в ряд Фурье, а не интеграл Фурье.
«По самому определению дискретного Фурье-преобразования, исходная функция и так предполагается равной
нулю за пределами расчетного интервала». Это для интеграла Фурье.
Для рядов Фурье за пределами интервала измерений исходная функция продлевается периодически, что позволяет найти «неискаженный правильный» спектр, даже если сигнал ограничен.
Собственно пафос данной статьи в этом и заключался ))
Хотя, если в пределах окна уложится целое число периодов сигнала — спектр все равно будет «искаженный»?
Но, честно говоря, не знаю, как оконные функции использовать в данной ситуации. Можно же просто менять длительность измерения, чтобы укладывалось целое число периодов составляющих сигнала. Зачем оконные функции?
Или электродвигатель вращает передаточный механизм с известной скоростью и т.д.
А с какой целью необходимо получить спектральное распределение? Чтобы посмотреть как энергия распределяется по частоте? Так это одна задача. А выделить составляющие сигнала — это другая задача.
«По самому определению дискретного Фурье-преобразования, исходная функция и так предполагается равной
нулю за пределами расчетного интервала». Это для интеграла Фурье.
Для рядов Фурье за пределами интервала измерений исходная функция продлевается периодически, что позволяет найти «неискаженный правильный» спектр, даже если сигнал ограничен.
Собственно пафос данной статьи в этом и заключался ))
Хотя, если в пределах окна уложится целое число периодов сигнала — спектр все равно будет «искаженный»?
Лекция — Преобразование Гильберта-Хуанга
Спектральный анализ на ограниченном интервале времени. Оконные функции
Но, честно говоря, не знаю, как оконные функции использовать в данной ситуации. Можно же просто менять длительность измерения, чтобы укладывалось целое число периодов составляющих сигнала. Зачем оконные функции?
Длительность 4,5 сек
Длительность 1,5 сек
Длительность 11,5 сек
Хм… Интуитивно мне казалось, что амплитуда гармоники 5Гц с увеличением длительности измерения будет стремиться к реальной 0.5 В.