Порождение данных с помощью рекурентной нейронной сети становится все более популярным методом и находит свое применение во многих областях компьютерной науки. С начала рождения концепции seq2seq в 2014 году прошло всего пять лет, но мир увидел множество применений, начиная с классических моделей перевода и распознавания речи, и заканчивая генерацией описаний объектов на фотографиях.
С другой стороны, со временем набрала популярность библиотека Tensorflow, выпущенная компанией Google специально для разработки нейронных сетей. Естественно, разработчики Google не могли обойти стороной такую популярную парадигму как seq2seq, поэтому библиотека Tensorflow предоставляет классы для разработки в рамках этой парадигмы. Эта статья посвящена описанию данной системы классов.