Алгоритм обработки ортогональных ФКМ сигналов
2 min
В настоящее время остаются актуальными в радиолокации задача разрешения, а в системах передачи информации — задача различения сигналов.
Для решения этих задач можно использовать ФКМ сигналы, кодированные ансамблями ортогональных функций, имеющих, как известно, нулевую взаимную корреляцию.
Для разрешения сигналов в радиолокации можно использовать пачечный сигнал, каждый импульс которого кодирован одной из строк ортогональной матрицы, например матрицы Виленкина-Крестенсона или Уолша-Адамара. Данные сигналы имеют хорошие корреляционные характеристики, что позволяет использовать их для вышеупомянутых задач. Для различения сигналов в системах передачи данных можно использовать такой же сигнал со скважностью равной единице.
Матрицу Виленкина-Крестенсона при этом можно использовать для формирования полифазного (p-фазного) ФКМ сигнала, а матрицу Уолша-Адамара, как частный случай матрицы Виленкина-Крестенсона для числа фаз равного двум, — для формирования бифазного сигнала.
Полифазные сигналы, как известно, обладают высокой помехоустойчивостью, структурной скрытностью и относительно малым уровнем боковых лепестков автокорреляционной функции. Однако для обработки таких сигналов необходимо затрачивать большее количество алгебраических операций сложения и умножения из-за наличия реальной и мнимой частей отсчетов сигнала, что приводит к увеличению времени обработки.
Для решения этих задач можно использовать ФКМ сигналы, кодированные ансамблями ортогональных функций, имеющих, как известно, нулевую взаимную корреляцию.
Для разрешения сигналов в радиолокации можно использовать пачечный сигнал, каждый импульс которого кодирован одной из строк ортогональной матрицы, например матрицы Виленкина-Крестенсона или Уолша-Адамара. Данные сигналы имеют хорошие корреляционные характеристики, что позволяет использовать их для вышеупомянутых задач. Для различения сигналов в системах передачи данных можно использовать такой же сигнал со скважностью равной единице.
Матрицу Виленкина-Крестенсона при этом можно использовать для формирования полифазного (p-фазного) ФКМ сигнала, а матрицу Уолша-Адамара, как частный случай матрицы Виленкина-Крестенсона для числа фаз равного двум, — для формирования бифазного сигнала.
Полифазные сигналы, как известно, обладают высокой помехоустойчивостью, структурной скрытностью и относительно малым уровнем боковых лепестков автокорреляционной функции. Однако для обработки таких сигналов необходимо затрачивать большее количество алгебраических операций сложения и умножения из-за наличия реальной и мнимой частей отсчетов сигнала, что приводит к увеличению времени обработки.