Pull to refresh
42
0
rzykov @rzykov

Пользователь

Send message

10 уроков рекомендательной системы Quora

Reading time11 min
Views9.8K


Привет, Хабр! Как директор по аналитике Retail Rocket, я периодически посещаю различные профильные мероприятия, и в сентябре 2016 года мне посчастливилось побывать на конференции RecSys, посвященной рекомендательным системам, в Бостоне. Было очень много интересных докладов, но мы решили сделать перевод одного из них Lessons Learned from Building Real­-Life Recommender Systems. Он очень интересен с позиции того, как Machine Learning применять в production системах. Про сам ML написано множество статей: алгоритмы, практика применения, конкурсы Kaggle. Но вывод алгоритмов в production — это отдельная и большая работа. Скажу по секрету, разработка алгоритма занимает всего 10%-20% времени, а вывод его в бой все 80-90%. Здесь появляется множество ограничений: какие данные где обрабатывать (в онлайне или оффлайне), время обучения модели, время применения модели на серверах в онлайне и т.д. Критически важным аспектом также является выбор оффлайн/онлайн метрик и их корреляция. На этой же конференции мы делали похожий доклад Hypothesis Testing: How to Eliminate Ideas as Soon as Possible, но выбрали вышеупомянутый учебный доклад от Quora, т.к. он менее специфичный и его можно применять за пределами рекомендательных систем.
Читать дальше →

Курс молодого бойца для Spark/Scala

Reading time3 min
Views27K
Хабр, привет!

Команда Retail Rocket использует узкоспециализированный стек технологий Hadoop + Spark для вычислительного кластера, о котором мы уже писали обзорный материал в самом первом посте нашего инженерного блога на Хабре.

Готовых специалистов для таких технологий найти довольно сложно, особенно, если учесть, что программируем мы исключительно на Scala. Поэтому я стараюсь найти не готовых специалистов, а людей, имеющих минимальный опыт работы, но обладающих большим потенциалом. Мы берем даже людей с частичной занятостью, чтобы было удобно совмещать учебу и работу, если кандидат — студент последних курсов.


Читать дальше →

Анализ данных на Scala. Считаем корреляцию 21-го века

Reading time8 min
Views22K

Очень важно выбрать правильный инструмент для анализа данных. На форумах Kaggle.com, где проводятся международные соревнования по Data Science, часто спрашивают, какой инструмент лучше. Первые строчки популярноcти занимают R и Python. В статье мы расскажем про альтернативный стек технологий анализа данных, сделанный на основе языка программирования Scala и платформы распределенных вычислений Spark.

Как мы пришли к этому? В Retail Rocket мы много занимаемся машинным обучением на очень больших массивах данных. Раньше для разработки прототипов мы использовали связку IPython + Pyhs2 (hive драйвер для Python) + Pandas + Sklearn. В конце лета 2014 года приняли принципиальное решение перейти на Spark, так как эксперименты показали, что мы получим 3-4 кратное повышение производительности на том же парке серверов.
Подробности

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Registered
Activity