Сергей Самойленко @samsergey
Руководитель, научный сотрудник, преподаватель
Information
- Rating
- Does not participate
- Location
- Петропавловск-Камчатский, Камчатский край, Россия
- Date of birth
- Registered
- Activity
Руководитель, научный сотрудник, преподаватель
Польщен.
У Макса Фрая есть такой пассаж: "В море есть остров, на острове — гора, на горе — дуб, на дубу сидит свинья, в свинячьих потрохах — утка, в утке — яйцо, в яйце — микроб, у микроба под язычком — шкатулка, а в шкатулке — САМОЕ ДЕЛО.
Так вот, на САМОМ ДЕЛЕ все не так, конечно."
Это несерьезно, но отражает суть моего видения мира. Мы с этого начали нашу дискуссию: система одна, она существует объективно и обладает рядом свойств. Но если необходимо её моделировать, то я выбираю наиболее подходящую модель из арсенала исследователя. И ни одна модель, которую я выберу, не будет системой "на самом деле". Впрочем, ряд свойств у них может совпадать.
Стохастическая модель бита в ячейке памяти будет тривиальна и неполезна и не будет отражать её свойств. Классическая модель транзистора в ячейке памяти тоже не будет работать, она дает непрерывный энергетический спектр электронов, а он не таков, там есть зоны запрещенные и свободные. И только квантовая модель позволяет точно описать, а значит и построить по модели, реальный транзистор на кристалле. При этом, состояние ячейки, и её взаимодействие с другими, подобными ей, лучше всего описываются полукольцом (булевой алгеброй), что нам и нужно.
Динамический хаос моделируется дифурами дискретными отображениями и топологией, однако, ряд его свойств так описать не получается: решения не повторяются, совсем как в стохастических системах, и тогда мы пользуемся вероятностными методами или привлекаем фрактальную геометрию. Ни одна из этих моделей не является исчерпывающей.
Если на дорогу выпускать в случайном порядке машины, лучше всего это опишет пуассоновский процесс и подсчет машин в интервал времени будет моделироваться случайной величиной. Но если, мы поставим шлагбаум и будем перекрывать движение, то сможем на какое-то расстояние передавать потоком машин сигналы, скажем, морзянкой. Управление — детерминированное, поток --стохастичный, система — ??
Это как с жизнью: атомы точно не живые, аминокислота, белок не живые, клетчатка, РНК, фосфолипиды, сахара не живые. Но РНК плюс белки рибосомы плюс аминокислоты кое что уже могут: собирать другие белки. Чуть повыше: фосфолипидная мембрана, ядро, аппарат Гольджи, хлоропласт, хромосома — не живые. Но митохондрия — пузырек из мембраны с ДНК и ферментами кое что уже может: размножаться, производить АТФ. И так далее. Вирусы — вы кто? Прионы — вы живы или нет? Риккетсии — скорее да, чем нет. Наконец, кошка, вот это точно живая система. Но вдруг, у кошки остановилось сердце. Инфаркт у кошки. Что поменялось? Белки? РНК? рибосомы испортились? Липиды рассосались? Митохондрии передохли? Нет, но кошка уже не живой объект. Это я к чему: начиная с определенного уровня, трудно или даже невозможно однозначно определить характеристику системы.
Хаотичность, стохастичность и самоорганизация происходят в достаточно сложных системах, так что границу уже трудно провести. Конвективная ячейка — это самоорганизация, а кристалл — это самоорганизация? а ансамбль молекул дружно двигающихся в одном направлении? наверное, да… а если это падающий кирпич? Не берусь провести границу, хоть занимался этими вещами профессионально.
А вот природы квантовой стохастичности я вообще не представляю. Может быть, это следствие истинной гамильтоновости этих систем. Но я принял для себя, что чем бы ни была система "электрон" на самом деле, вероятность его регистрации лучше всего описывается волновой функцией. Он не волна и не частица, он электрон. Это вероятность ведет себя как волна. Подозреваю, что истинные квантовики меня поднимут на смех за такое наивное представление, но оно примиряет с корпускулярно-волновым дуализмом и позволяет решать задачи.
О! Тут можно вспомнить про то, что процесс варки можно комбинировать двумя способами: последовательно и параллельно, после чего выдать три ответа!
При токах и температурах процессора и памяти, очевидно, что система вполне детерминирована. Миллиграмм кремния это 28 миллимолей — огромное число частиц! Чтобы получить квантовую стохастику в макромасштабе для квантового компьютера вон как стараются!
И, знаете, меня не покидает ощущение, что вы по-доброму дразнитесь, задавая столько вопросов :)
Ага, прокрастинация глав эдак на десять! С иллюстрациями и формулами… живут же люди! Им ещё за это деньги платят! :)
Всё равно непонятно, у вас размерности не сходятся :) Болтики — подмножество самолёта? Подсистемы могут быть стохастическими, а могут не быть. Идеальный газ — стохастическая система, его подсистема из одной молекулы — нет, из двух — тоже нет. Для сотни молекул уже можно подтвердить гипотезу о том, что их энергии подчиняются распределению Гиббса и говорить о температуре и энтропии с 10% точностью. Для моля газа термодинамика встаёт в полный рост, но всё равно остаются флуктуации. Однако все эти подсистемы — не просто подмножества множества молекул, они обладают системными свойствами: отсутствие взаимодействия друг с другом, сохранение импульса и энергии и т.д.
Если кому-то может быть на двоих сто лет, то сколько же лет мне? Смотрите, я родился сорок лет назад, каждой мое руке — по сорок лет, родились-то мы одновременно, итого — 80! И ногам по сорок, в сумме 160. Но постойте, половинкам рук и ног тоже по сорок, значит, итого получаем 380! А их половинкам… и так далее. Таким образом, получаем что я вечен! А с другой стороны, если возраст моих половинок в два раза меньше моего, то выходит, что каждая из них родились двадцать лет назад. А их половинки — десять лет назад, а их половинки… и так далее. Значит я возник мгновение назад! Причём, сразу сорокалетним, то есть, вечным!
"Нам тридцать пять на двоих, мы не спускаем друг с друга глаз.." — это поэзия, там можно всё. Но мы на Хабре, у нас математика.
А смысл?
Разберёмся! :)
Не совсем понял, что означает "подмножество". Подсистема?
Об этом я и хотел сказать, критикуя вульгарный "эффект бабочки": влияние флуктуаций в устойчивой системе не выходит за пределы своего масштаба. Броуновское движение наблюдается на масштабе флуктуаций давления в жидкости, но исчезает уже на сотне микрон — усредняется. По асфальту маленькая бусинка будет катиться стохастически, а шарик от подшипника ровно. И лишь в неустойчивом и неравновесном состоянии: при фазовом переходе, например, флуктуация может стать ядром конденсации и вырасти в каплю или кристаллик.
Совершенно верно, мало кто из нас видел метеорит, хотя их полно вморожено о льды Антарктиды.
По поводу шарика. Если коротко, то это гамильтонова система, в которой возникает разрушение резонансов. Посмотрите, например тут. Хаос по такому сценарию возникает при формировании планетезималей и колец вокруг планет-гигантов, в нелинейных бильярдах, волновых и квантовых системах. Об этом была хорошая статья на Хабре.
Так и есть, когда носителей заряда немного, или существуют сильные положительные обратные связи, то наблюдаются стохастические явления: фликкер-шум, например. Обычно же потоки зарядов имеют порядок сотых долей числа Авогадро и флуктуации уже не играют роли, можно методами статфизики или термодинамики переходить к макроскопическому описанию и к непрерывным моделям.
Всё-таки, бифуркации чаще всего относятся к изменениям параметра системы, а не к обобщенным координатам. Поэтому, рассуждая о структуре аттрактора говорят о границах области притяжения, а не о бифуркационных точках. Они находятся в разных пространствах.
Аттрактор Лоренца хорошо демонстрирует один из сценариев развития хаоса — перемежаемость. Система большую часть времени ведет себя детерминировано, но в некоторые моменты перескакивает либо в хаотическое состояние либо в одно из сопряженных детерминированных состояний. И вот эти-то моменты происходят непредсказуемо. Осциллятор Дюффинга тоже имеет такие режимы, при относительно низких частотах возмущения. Однако, я бы не стал обобщать этот сценарий на нашу жизнь: это довольно тонкий эффект, который легко "забить" внешним стохастическим воздействием.
Пример, стати неплохо иллюстрирует последние абзацы главы. В аттракторе Лоренца в режиме развившегося хаоса траектория большую часть времени представляет собой "нормальные" затухающие колебания, пока внезапно её не "выбрасывает" в сопряженную плоскость, где она вновь ведет себя "нормально".
Если в детерминированной системе присутствует стохастический параметр, система становится стохастической. В случае одного транспортного средства такими параметрами являются трудно формализуемые намерения и обстоятельства человека, тесно связанные с намерениями и обстоятельствами неопределённого количества других людей. А для всего потока мы имеем целый ансамбль таких стохастических частиц. Ничто, правда не мешает стохастической системе быть управляемой, закономерно менять интенсивность, создавать волнообразное поведение и т.д. Ну, а то, что моменту регистрации автомобиля предшествует некая "аура" (шум, свет) не делает сам момент более предсказуемым, просто, поле создаваемое аурой сглаживается (шумовой фон над дорогой плавно меняется).
Я выбирал примеры из своей работы и из тех систем, которые легко себе представить. Аттрактор Лоренца стал поп-символом теории динамического хаоса, но он несколько специален и весьма неочевидно связан с метеорологией.
Следующая глава посвящена именно механике бутерброда :)
А вы описали прекрасный пример рождения исследователя!
Нет, не все. В детерминированных системах, чувствительных к начальным данным — полностью закономерный характер. В детерминированных хаотических системах начальные данные тоже влияют, но существеннее вклад сколь угодно малых отклонений в ходе самого процесса. В стохастических системах случайность заложена в саму природу системы и присутствует на уровне уравнений либо параметров.
Меняет-меняет, это не просто игра формулировок. Смотрите, группа, алгебра де Моргана, линейное пространство, плотность вероятности, всё это — математические структуры, алгебраические системы или абстракции, не имеющие отношения к реальному миру. С них нет спроса о границах применимости — только строгие определения и свойства, которые можно доказать — не интерпретировать, не приблизить, не придумать, а доказать.
С другой стороны, вращение физического тела, течение воды в разветвлённом трубопроводе, скорость материальной точки, местонахождение электрона — это реальные явления и величины и их нужно как-то моделировать. Вращение можно моделировать вещественным числом, кольцом вычетов, группой вращения, матрицей поворота или кватернионом. Скорости удобно описывать, как линейные пространства, но у этой модели есть ограничения при релятивистских скоростях, тогда лучше использовать четырёх-вектор с другими свойствами. Потоки воды и гидравлические сопротивления можно описать алгеброй де Моргана, но не для всех гидравлических сетей, а для некоторого широкого класса. Положение электрона, при описании одних явлений моделируется радиус-вектором, а в других — как случайная величина с известной плотностью вероятности. Модели имеют ограничения, они — упрощение реального мира. Математики, строя свои системы, могут об этом не думать.
В этой книжке я рассуждаю, по большей части, о чистой математике. А использую примеры из условно реального мира, как иллюстрации. И я намеренно не рассуждаю ни о психологии, ни об интерпретации событий или о человеческом факторе, поскольку они трудно формализуются и вызывают споры. Моя же задача — показать как устроен математический аппарат теории вероятностей и математической статистики тем, кому это интересно, но кто не получил (ещё) последовательного математического образования.
Теория вероятностей применима к более широкому классу задач, чем анализ экспериментальных данных (это, скорее, область статистики), но у её создателей никогда не было цели распространить теорию на все сферы человеческой жизни.
Бартош Милевский иллюстрирует основы теории категории на хрюшках. Но его книги и лекции, всё-таки, не о хрюшках. Моими хрюшками оказались ироничные законы подлости, а называть книжку "Теория несчастья" или "Теория подлости" я не хочу.