Хэш-алгоритмы
Как я полагаю, многим известно о том, что с 2007 года Национальный институт стандартов и технологий США (NIST) проводит конкурс на разработку хэш-алгоритма для замены SHA-1, и семейства алгоритмов SHA-2. Однако данная тема, почему-то обделена вниманием на сайте. Собственно это и привело меня к вам. Предлагаю вашему вниманию цикл статей, посвященных хэш-алгоритмам. В этом цикле мы вместе изучим основы хэш-функций, рассмотрим самые именитые хэш-алгоритмы, окунемся в атмосферу конкурса SHA-3 и рассмотрим алгоритмы, претендующие на победу в нем, обязательно их потестируем. Так же по возможности будут рассмотрены российские стандарты хеширования.
О себе
Студент кафедры информационной безопасности.
О хэшировании
В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
— построения систем контроля целостности данных при их передаче или хранении,
— аутентификация источника данных.
Хэш-функцией называется всякая функция h:X -> Y, легко вычислимая и такая, что для любого сообщения M значение h(M) = H (свертка) имеет фиксированную битовую длину. X — множество всех сообщений, Y — множество двоичных векторов фиксированной длины.
Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x1, x2) двух переменных, где x1, x2 и y — двоичные векторы длины m, n и n соответственно, причем n — длина свертки, а m — длина блока сообщения.
Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M1, M2,.., MN применяют следующую последовательную процедуру вычисления свертки:
Ho = v,
Hi = f(Mi,Hi-1), i = 1,.., N,
h(M) = HN
Здесь v — некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.
Выделяют два важных вида криптографических хэш-функций — ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.
О статистических свойствах и требованиях
Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.
К ключевым функциям хэширования предъявляются следующие требования:
— невозможность фабрикации,
— невозможность модификации.
Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе — высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.
К бесключевым функциям предъявляют требования:
— однонаправленность,
— устойчивость к коллизиям,
— устойчивость к нахождению второго прообраза.
Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.
Это была теоретическая часть, которая пригодится нам в дальнейшем…
О популярных хэш-алгоритмах
Алгоритмы CRC16/32 — контрольная сумма (не криптографическое преобразование).
Алгоритмы MD2/4/5/6. Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 — очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.
Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 — собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.
Российский стандарт — ГОСТ 34.11-94.
В следующей статье
Обзор алгоритмов MD (MD4, MD5, MD6).
Литература
А. П. Алферов, Основы криптографии.
Брюс Шнайер, Прикладная криптография.