Магия самообучения или Self-Supervised Learning
#нейрословарь
В своих разработках «Криптонит» активно использует искусственные нейронные сети. Поэтому мы решили расшифровать связанные с этой сферой термины и их практический смысл. Все материалы из рубрики "Нейрословарь" подготовлены при помощи наших экспертов из лаборатории больших данных.
Self-Supervised Learning или магия самообучения. Способность нейросетей к самообучению выглядит фантастически, но на самом деле это всего лишь метод ML, основанный на избыточности данных. В отличие от классического подхода «обучение с учителем», здесь не требуются аннотированные человеком примеры (размеченные изображения, проверенные фрагменты текста и т.д.).
В парадигме self-supervised learning нейросеть учится на «сырых» (немаркированных) данных. Она сама расставляет метки при первом прогоне обучающей выборки, а затем использует их на следующих этапах обучения. Обычно для достижения сравнимого результата при самообучении требуется в разы больше данных, поэтому метод неприменим для автоматической классификации редких событий. Зато он удобен в тех случаях, когда можно дать ИИ массу однотипных примеров.
Иногда словосочетание self-supervised learning сокращается до SSL, но из контекста обычно понятно, когда речь идёт о самообучении, а когда о Secure Sockets Layer. Впрочем, ИИ уже применяют для анализа трафика, поэтому фраза «SSL для SSL» тоже не лишена смысла.
PS: Какие еще термины из сферы ИИ нам еще раскрыть? Пишите в комментариях!