Как стать автором
Поиск
Написать публикацию
Обновить
0

Hadoop *

Фреймворк для распределённых приложений

Сначала показывать
Порог рейтинга
Уровень сложности

Bigdata стек глазами воинствующего ораклойда

Время на прочтение6 мин
Количество просмотров8.1K
На Хабре и прочих интернетах чуть не каждый день постят пустые статьи о бигдата, создавая у спецов стойкое ощущение, что кроме маркетинга за стеком бигдаты ничего нет. На самом деле там достаточно интересных технологий под капотом Hadoop и тут я хочу слегка разбавить маркетинг, взглядом технического спеца с опытом Oracle.

В первую очередь стоит понимать, что один из столпов бигдаты Hadoop, это не только батч процессинг и map-reduce, как многие пытаются изобразить. Это запросто может быть обработка и с противоположного спектра задач: чтение потока мелких сообщений, например от IoT (spark на Hadoop, читает Kafka stream), на ходу агрегируя и выявляя отклонения.
Читать дальше →

Лекция о двух библиотеках Яндекса для работы с большими данными

Время на прочтение8 мин
Количество просмотров13K
Пару недель назад в Яндексе прошла встреча PyData, посвящённая анализу больших данных с использованием Python. В том числе на этой встрече выступил Василий Агапитов — руководитель группы разработки инструментов аналитики Яндекса. Он рассказал о двух наших библиотеках: для описания и запуска расчетов на MapReduce и для извлечения информации из логов.


Под катом — расшифровка и часть слайдов.

Big Data в Райффайзенбанке

Время на прочтение6 мин
Количество просмотров23K
Всем привет! В этой статье мы расскажем про Big Data в Райффайзенбанке. Но прежде чем перейти к сути, хотелось бы внести ясность по поводу самого определения Big Data. Действительно, в последние несколько лет этот термин употреблялся во множестве контекстов, что привело к размытию границ самого термина и потере содержательной части. Мы в Райффайзенбанке выделили три направления, которые мы относим к Big Data:
Читать дальше →

Apache Spark как ядро проекта. Часть 2. Streaming, и на что мы напоролись

Время на прочтение3 мин
Количество просмотров9.3K
Привет коллеги. Да, не прошло и три года с первой статьи, но проектная пучина отпустила только сейчас. Хочу с вами поделиться своими соображениями и проблемами касательно Spark streaming в связке с Kafka. Возможно среди вас есть люди с успешным опытом, поэтому буду рад пообщаться в комментариях.

Читать дальше →

Инфраструктура Twitter: масштаб

Время на прочтение15 мин
Количество просмотров17K

Обзор парка Twitter


Twitter пришёл из эпохи, когда в дата-центрах было принято устанавливать оборудование от специализированных производителей. С тех пор мы непрерывно разрабатывали и обновляли серверный парк, стремясь извлечь пользу из последних открытых технологических стандартов, а также повысить эффективность работы оборудования, чтобы обеспечить наилучший опыт для пользователей.

Наше текущее распределение оборудования показано ниже:


Читать дальше →

Распределённый xargs, или Исполнение гетерогенных приложений на Hadoop-кластере

Время на прочтение9 мин
Количество просмотров7.9K

enter image description here


Привет, Хабр! Меня зовут Александр Крашенинников, я руковожу DataTeam в Badoo. Сегодня я поделюсь с вами простой и элегантной утилитой для распределённого выполнения команд в стиле xargs, а заодно расскажу историю её возникновения.


Наш отдел BI работает с объёмами данных, для обработки которых требуются ресурсы более чем одной машины. В наших процессах ETL (Extract Transform Load) в ход идут привычные миру Big Data распределённые системы Hadoop и Spark в связке с OLAP-базой Exasol. Использование этих инструментов позволяет нам горизонтально масштабироваться как по дисковому пространству, так и по CPU/ RAM.


Безусловно, в наших процессах ETL существуют не только тяжеловесные задачи на кластере, но и машинерия попроще. Широкий пласт задач решается одиночными PHP/ Python-скриптами без привлечения гигабайтов оперативной памяти и дюжины жёстких дисков. Но в один прекрасный день нам потребовалось адаптировать одну CPU-bound задачу для выполнения в 250 параллельных инстансов. Настала пора маленькому Python-скрипту покинуть пределы родного хоста и устремиться в большой кластер!

Читать дальше →

С чего начать внедрение Hadoop в компании

Время на прочтение16 мин
Количество просмотров29K


Алексей Еремихин ( alexxz )


Я хочу навести порядок в головах, чтобы люди поняли, что такое Hadoop, и что такое продукты вокруг Hadoop, а также для чего не только Hadoop, но и продукты вокруг него можно использовать на примерах. Именно поэтому тема — «С чего начать внедрение Hadoop в компании?»

Структура доклада следующая. Я расскажу:

  • какие задачи я предлагаю решать с помощью Hadoop на начальных этапах,
  • что такое Hadoop,
  • как он устроен внутри,
  • что есть вокруг него,
  • как Hadoop применяется в Badoo в рамках решения задач с первого пункта.

Читать дальше →

Hadoop From Scratch

Время на прочтение17 мин
Количество просмотров18K
Эта статья послужит практическим руководством по сборке, начальной настройке и тестированию работоспособности Hadoop начинающим администраторам. Мы разберем, как собрать Hadoop из исходников, сконфигурировать, запустить и проверить, что все работает, как надо. В статье вы не найдете теоретической части. Если вы раньше не сталкивались с Hadoop, не знаете из каких частей он состоит и как они взаимодействуют, вот пара полезных ссылок на официальную документацию:

hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-site/YARN.html

Почему просто не использовать готовый дистрибутив?

— Обучение. Похожие статьи часто начинаются с рекомендаций скачать образ виртуальной машины с дистрибутивом Cloudera или HortonWorks. Как правило, дистрибутив – сложная экосистема с уймой компонент. Новичку будет непросто разобраться, где что, и как это все взаимодействует. Начиная from scratch мы немного уменьшаем порог вхождения, так как имеем возможность рассматривать компоненты по одной.

— Функциональные тесты и бенчмарки. Есть небольшой лаг между выходом новой версии продукта, и моментом, когда она появляется в дистрибутиве. Если вам необходимо протестировать новые функции только что появившейся версии, Вы не сможете использовать готовый дистрибутив. Также будет сложно сравнить производительность двух версий одного и того же софта, так как в готовых дистрибутивах как правило отсутствует возможность обновить версию какого-либо одного компонента, оставив все остальное как есть.

— Just for fun.
Читать дальше →

Архитектура хранения данных в Facetz.DCA

Время на прочтение5 мин
Количество просмотров6.3K
В цикле статей «BigData от А до Я» мы рассмотрели один из наиболее часто используемых технологических стеков для работы с большими данными Apache Hadoop и привели примеры его использования в продуктах DCA. Теперь мы расскажем, как выглядит архитектура хранения данных в Facetz.DCA.


Читать дальше →

Есть ли будущее у InfiniBand на Hadoop?

Время на прочтение7 мин
Количество просмотров5.3K


Hadoop был создан для запуска на чипах компьютеров широкого употребления с сетевым подключением с низкой скоростью. Но Hadoop кластеры стали больше и организации превысили лимит мощности. Для решения проблемы были найдены специализированные решения такие как твердотельные накопители и сети InfiniBand, у которых есть запас роста.

InfiniBand был представлен миру в 2000 году как сетевой протокол, который был быстрее чем TCP/IP — первоначальный сетевой протокол в сетях Ethernet. Благодаря использованию прямого удаленного доступа к памяти (Remote Direct Memory Access (RDMA) InfiniBand позволяет напрямую записывать/копировать данные из памяти удаленного компьютера, обходя операционную систему и возможные задержки.
Читать дальше →

Когда старый MapReduce лучше нового Tez

Время на прочтение9 мин
Количество просмотров14K


Как всем известно, количество данных в мире растёт, собирать и обрабатывать поток информации становится всё сложнее. Для этого служит популярное решение Hadoop c идеей упрощения методов разработки и отладки многопоточных приложений, использующее парадигму MapReduce. Эта парадигма не всегда удачно справляется со своими задачами, и через некоторое время появляется «надстройка» над Hadoop: Apache Tez с парадигмой DAG. Под появление Tez подстраивается и HDFS-SQL-обработчик Hive. Но не всегда новое лучше старого. В большинстве случаев HiveOnTez значительно быстрее HiveOnMapReduce, но некоторые подводные камни могут сильно повлиять на производительность вашего решения. Здесь я хочу рассказать, с какими нюансами столкнулся. Надеюсь, это поможет вам ускорить ETL или другой Hadoop UseCase.
Читать дальше →

Видеозапись вебинара «Инструменты для работы Data Scientist»

Время на прочтение1 мин
Количество просмотров5.1K


Вчера наша команда провела вебинар на тему «Инструменты для работы Data Scientist». В его рамках мы рассмотрели, кто такой data scientist и какими инструментами он пользуется. Поговорили о платформе FlyElephant и чем она может быть полезной для работы data scientist’а.
Смотреть видеозапись и презентацию

Вебинар: Инструменты для работы Data Scientist

Время на прочтение1 мин
Количество просмотров4.2K


Команда FlyElephant приглашает всех 28 сентября в 16.00 на вебинар «Инструменты для работы Data Scientist». В его рамках мы рассмотрим, кто такой data scientist и какими инструментами он пользуется. Поговорим о платформе FlyElephant и чем она может быть полезной для работы data scientist’а.

Содержание вебинара:

  • Data Science
  • Data Scientist vs Data Engineer
  • How does it work?
  • Notebook / IDE
  • Methods & Algorithms
  • Software
  • Deep Learning Tools
  • Programming Languages
  • Cloud Services
  • Computing power
  • Competitions
  • FlyElephant

Зарегистрироваться на вебинар можно здесь.

Ближайшие события

Flume — управляем потоками данных. Часть 3

Время на прочтение12 мин
Количество просмотров13K
Привет, Хабр! После долгой паузы мы наконец-то возвращаемся к разбору Apache Flume. В предыдущих статьях мы познакомились с Flume (Часть 1) и разобрались, как настраивать основные его компоненты (Часть 2). В этой, заключительной, части цикла мы рассмотрим следующие вопросы:

  • Как настроить мониторинг компонентов узла.
  • Как написать собственную реализацию компонента Flume.
  • Проектирование полноценной транспортной сети.

Читать дальше →

Strata + Hadoop 2016 review

Время на прочтение10 мин
Количество просмотров5.6K


В последний год в Badoo стали очень активно использовать связку Hadoop + Spark и построили свою систему сбора и обработки десятков миллионов метрик при помощи Spark Streaming.
Для того чтобы расширить наши знания и познакомиться с последними новинками в этой сфере, в конце мая этого года разработчики отдела BI (Business Intelligence) отправились в Лондон, где проходила очередная конференция серии Hadoop + Strata, посвященная широкому спектру вопросов в области машинного обучения, обработки и анализа больших данных.
Читать дальше →

Big Data головного мозга

Время на прочтение14 мин
Количество просмотров94K

Наверно, в мире данных нет подобного феномена настолько неоднозначного понимания того, что же такое Hadoop. Ни один подобный продукт не окутан таким большим количеством мифов, легенд, а главное непонимания со стороны пользователей. Не менее загадочным и противоречивым является термин "Big Data", который иногда хочется писать желтым шрифтом(спасибо маркетологам), а произносить с особым пафосом. Об этих двух понятиях — Hadoop и Big Data я бы хотел поделиться с сообществом, а возможно и развести небольшой холивар.
Возможно статья кого-то обидит, кого-то улыбнет, но я надеюсь, что не оставит никого равнодушным.


image
Демонстрация Hadoop пользователям

Читать дальше →

Курс молодого бойца для Spark/Scala

Время на прочтение3 мин
Количество просмотров27K
Хабр, привет!

Команда Retail Rocket использует узкоспециализированный стек технологий Hadoop + Spark для вычислительного кластера, о котором мы уже писали обзорный материал в самом первом посте нашего инженерного блога на Хабре.

Готовых специалистов для таких технологий найти довольно сложно, особенно, если учесть, что программируем мы исключительно на Scala. Поэтому я стараюсь найти не готовых специалистов, а людей, имеющих минимальный опыт работы, но обладающих большим потенциалом. Мы берем даже людей с частичной занятостью, чтобы было удобно совмещать учебу и работу, если кандидат — студент последних курсов.


Читать дальше →

Big Data от A до Я. Часть 5.1: Hive — SQL-движок над MapReduce

Время на прочтение9 мин
Количество просмотров100K
Привет, Хабр! Мы продолжаем наш цикл статьей, посвященный инструментам и методам анализа данных. Следующие 2 статьи нашего цикла будут посвящены Hive — инструменту для любителей SQL. В предыдущих статьях мы рассматривали парадигму MapReduce, и приемы и стратегии работы с ней. Возможно многим читателям некоторые решения задач при помощи MapReduce показались несколько громоздкими. Действительно, спустя почти 50 лет после изобретения SQL,  кажется довольно странным писать больше одной строчки кода для решения задач вроде «посчитай мне сумму транзакций в разбивке по регионам».

С другой стороны, классические СУБД, такие как Postgres, MySQL или Oracle не имеют такой гибкости в масштабировании при обработке больших массивов данных и при достижении объема большего дальнейшая поддержка становится большой головоной болью.



Собственно, Apache Hive был придуман для того чтобы объединить два этих достоинства:

  • Масштабируемость MapReduce
  • Удобство использования SQL для выборок из данных.

Под катом мы расскажем каким образом это достигается, каким образом начать работать с Hive, и какие есть ограничения на его применения.
Читать дальше →

Flume — управляем потоками данных. Часть 2

Время на прочтение23 мин
Количество просмотров14K
Привет, Хабр! Мы продолжаем цикл статей, посвященный Apache Flume. В предыдущей части мы поверхностно рассмотрели этот инструмент, разобрались с тем, как его настраивать и запускать. В этот раз статья будет посвящена ключевым компонентам Flume, с помощью которых не страшно манипулировать уже настоящими данными.

Читать дальше →

Сравнение производительности Hadoop на DAS и Isilon

Время на прочтение6 мин
Количество просмотров4.2K


Я уже писал о том, с помощью Isilon можно создавать озёра данных, способные одновременно обслуживать по несколько кластеров с разными версиями Hadoop. В той публикации я упомянул, что во многих случаях системы на Isilon работают быстрее, чем традиционные кластеры, использующие DAS-хранилища. Позднее это подтвердили и в IDC, прогнав на соответствующих кластерах различные Hadoop-бенчмарки. И на этот раз я хочу рассмотреть причины более высокой производительности Isilon-кластеров, а также как она меняется в зависимости от распределения данных и балансировки внутри кластеров.
Читать дальше →