Pull to refresh

❓100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_12

?Вопрос_12: Expectation-Maximization (EM) ?

Expectation-Maximization (EM) - это итерационный алгоритм, который используется для оценки параметров вероятностных моделей, когда некоторые данные являются наблюдаемыми, а другие данные являются скрытыми или неполными. EM-алгоритм часто применяется в статистике и машинном обучении для обучения моделей с неизвестными параметрами.

EM-алгоритм состоит из двух основных шагов: шага ожидания (Expectation) и шага максимизации (Maximization).

  1. Шаг ожидания (Expectation step, E-шаг): На этом шаге вычисляются ожидаемые значения скрытых переменных (или "ответственностей") в соответствии с текущими значениями параметров модели. Это делается путем вычисления условного математического ожидания скрытых переменных при условии наблюдаемых данных и текущих параметров модели.

  2. Шаг максимизации (Maximization step, M-шаг): На этом шаге обновляются параметры модели, чтобы максимизировать ожидаемое правдоподобие, полученное на E-шаге. Обновление параметров происходит путем решения оптимизационной задачи, которая может включать максимизацию правдоподобия или минимизацию ошибки между наблюдаемыми данными и ожидаемыми значениями.

    t.me/DenoiseLAB (Еесли вы хотите быть в курсе всех последних новостей и знаний в области анализа данных);

    https://boosty.to/denoise_lab (Если вы хотите поддержать проект, или получить более модные фишки по коду и продвижению подписывайтесь).

Tags:
Total votes 3: ↑3 and ↓0+3
Comments0

Articles