GPT-4o: технический разбор модели, которая взрывает людям мозги

Разбираем архитектуру, не пугаем. LLM — полезный инструмент при адекватном использовании. Но если марафоните сутками — это сигнал.
Кризисная линия: 8-800-2000-122 (анонимно, 24/7).

Разбираем архитектуру, не пугаем. LLM — полезный инструмент при адекватном использовании. Но если марафоните сутками — это сигнал.
Кризисная линия: 8-800-2000-122 (анонимно, 24/7).

Когда ваш AI говорит «я подумал и решил» — кто решил? Веса модели? Рандом?
У нас есть лог принятия решения в Python.
А у вас?

Почему векторной базы/RAG недостаточно для качественной памяти ИИ-агентов. Приближаем поведение агента к человеческому с помощью архитектурных решений поверх LLM

TRIZ Insight — агент‑решатель противоречий. Он берёт задачу, прогоняет её через формальный ТРИЗ‑скелет и LLM, а на выходе даёт конкретный план действий с ролями, шагами и метриками успеха. Подходит для личных и бизнесовых задач.

Как перевести мышление человека в JSON, положить в нейросеть и перестать писать бессмысленные промпты.

Недавно мои коллеги-разрабы в чате удивились: зачем в архитектуре агента (ENA) нужен слой SOMA, симулирующий соматику и ресурсность? Мол, это рудимент как аппендицит и неэффективно. Агент должен быть в always-on и постоянно на позитиве.
Давайте разберем, зачем.

Все вокруг спорят, станет ли крупная языковая модель субъектом.
Показывают скрины ответов, где модель рассуждает про себя, говорит что ей страшно или радостно, и делают выводы про зарождающееся сознание.Проблема в том, что на уровне инженерии там нет ни субъекта, ни траектории, ни устойчивого Я. Есть мощный условный распределитель по токенам. Все. В этой статье я разберу, почему так, что для субъектности не хватает и как это закрывает архитектура ENA как отдельный слой поверх LLM.