Если один показ одного баннера одному пользователю стоит 1 цент, а сделка получается с 10000 таких показов — то 9999 пользователей увидели то, что им не нужно. Но иначе сделки не будет. А если средний чек по ней, кажем, 1000 долларов — ну извините. Вам эти баннеры куда только не засунут.
но не используйте фон! долго пытался оттереть монитор ноута, пока не понял, что это №@$! фон такой, ненавязчиво волнистые текстуры
Зато теперь Вы знаете, как просто и безнаказанно пакостить врагам. Целую технологию из этого можно развить — ну, типа, белый фон «по умолчанию», а у на нём пара «битых пикселей». Помните прикол из 90-х, когда обоями рабочего стола делали скриншот этого самого стола, а потом удаляли все иконки?
Благодарю, очень полезная и познавательная статья. Интересовался этой темой, но ещё не видел ни одного столь подробного и обстоятельного текста на русском по штормглассу. Спасибо!
Я же вам говорю, в математике эти две вещи отождествляются, их по факту не делят.
И:
Когда говорят об исходе в контексте множества исходов (или элементарных событий) то имеются в виду элементарные исходы как элементы. И множество таковых можно выбирать любым.
Когда говорят об элементарных событиях в контексте алгебры подмножеств — то имеются ввиду соответствующие подмножества-синглтоны. Эти подмножества уже любыми быть не могут, очевидно, т.к. они, с-но, синглтоны по определению и не могут быть чем-то другим.
Противоречия между этими двумя утверждениями не видите?.. Так «отождествляют» или «когда говорят»?
Еще раз, вы берете множество Х (оно любое, совершенно любое, состоящее из чего угодно), потом рассматриваете некую алгебру подмножеств на Х (назовем ее А). Вот Х — оно любое и из чего угодно, а А — обладает некоторой структурой. Когда говорят «множество элементарных событий/исходов» — имеют ввиду Х, а не совокупность синглтонов из А.
Что именно вам тут непонятно? :)
Мне непонятно, с чёго Вы взяли что эта модель будет адекватно описывать случайные явления если множество Х — ВООБЩЕ ЛЮБОЕ.
Это ваше интуитивное представление. А мы тут о теории вероятностей (по крайней мере я) разговариваем. В теории вероятностей событие — это множество элементарных исходов.
Сущности продолжают множиться :-) Теперь у нас есть:
1) элементарные события и события (были изначально)
2) исходы (появились недавно)
3) элементарные исходы (появились только что)
Ваша армия растёт :-)
И в результате считаете, что событие «в коробке только два шара 2 и 3» является комбинацией событий «в коробке только шар 2» и «в коробке только шар 3».
Нет. Никаких «только». Я считаю, что событие «игральная кость выпала чётным числом» есть комбинация ЭЛЕМЕНТАРНЫХ событий «игральная кость выпала цифрой 2», «игральная кость выпала цифрой 4», «игральная кость выпала цифрой 6». Операция ИЛИ, объединение. Что именно произошло? Произошло ОДНО ИЗ этих трёх событий. Не-элементарное событие, сводимое к трём элементарным.
Ваша иллюстрация с шарами красивая и гибкая, но запутывает дело, ибо в ней изначально нет этой самой однозначности (то самое «только»). С игральной костью всё проще.
Ну если множество элементарных событий изменить, то и ответ изменится. Почему это вас удивляет?
Потому что в реальности такое сделать нельзя. Вы можете дописать ко множеству элементарных событий «монетка выпала орлом» и «монетка выпала решкой» ещё и «монетка выпала на ребро». Но дописать туда же «элементарное» событие «монетка выпала ИЛИ орлом ИЛИ решкой» — уже нет. Если в Вашей модели Вы такое делаете — она перестаёт описывать случайные события.
{О, Р,{О, Р}} — как Вы себе это представляете в виде ВЗАИМОИСКЛЮЧАЮЩИХ событий? Если монетка выпала ИЛИ орлом, ИЛИ решкой — это ЕДИНОЕ событие! — как это ИСКЛЮЧИТ выпадение монетки орлом (или решкой)?
Смотрите, у вас есть множество исходов X. элементы этого мн-ва это исходы.
Замечательно, но ведь выше Вы утверждали иное:
Берете любое множество и объявляется его элементы — элементарными событиями.
habr.com/ru/post/446716/#comment_20025046
Я Вам предложил вариант, который опровергает ПЕРВОЕ Ваше утверждение. Вы же ТЕПЕРЬ хотите конструировать события из исходов и рассматривать именно множество ИСХОДОВ. Ну Вы уж разберитесь сначала, как говорят в таких случаях — чем Вы оперируете, элементарными событиями или исходами.
При этом {{4,5}} != {4} U {5}, оно не получается объединением. {4} U {5} = {4, 5} != {{4,5}}
Я в курсе :-) но если события конструируются из элементарных событий (на чём я настаиваю), то достаточно {4} U {5} = {4, 5} чтобы НЕ ВСЯКОЕ множество элементов можно было рассматривать как множество элементарных событий.
Элементарность событий определяется тем, как задан эксперимент. Если вы бросаете монетку дважды, то нет такого элементарного события первая монетка выпала орлом.
Это могут быть и две монетки, выбрасываемые независимо, роли не играет. Событие — то, что можно зарегистрировать. Элементарное событие — событие, исключающее другие элементарные события и при этом ещё не сводимое ни к какой их комбинации (за исключением их полного отсутствия, естественно).
Вопрос, собственно, в следующем. Вот есть множество, элементы которого приняты за элементарные события. Например, {1,2,3,4,5,6}. Шесть возможных элементарных событий. Может ли подмножество этого множества, например, {4,5}, тоже быть элементарным событием?
Если нет — что Вы будете делать с множеством {1,2,3,4,5,6,{4,5}}?.. Если да — это будет противоречить определению элементарного события (оно не должно сводиться к другим элементарным событиям, а {4,5} получается объединением элементов 4 и 5).
По смыслу — игральная кость может выпасть одной из шести цифр вверх. Каждый такой вариант (исход) — элементарное событие. Есть также событие, когда игральная кость выпадает ИЛИ цифрой 4 вверх, ИЛИ цифрой 5 — этот факт можно зарегистрировать и передать как информацию. Но это событие уже не будет элементарным. Добавлять его к множеству элементарных событий нельзя.
И? Это никак не отменяет то что в вашем случае с монетками выпадение орла или решки элементарными событиями не будут. Элементарное событие состоит из одного элемента.
Будут. Я подбросил монетку. Она выпала орлом. Событие? Событие. Элементарное? Элементарное. Далее, я подбросил монетку ещё раз. Она выпала (предположим) опять орлом. Событие? Событие. Элементарное? Элементарное. Или у Вас другое мнение?
А чем тогда будет регистрация И первого из этих событий И второго? Очевидно, тоже событием, третьим — уже не элементарным. Состоящим из двух элементарных, указанных выше.
Почему не называть? И зачем мне создавать, если уже создали, до меня?
Почему нельзя? Можно. В качестве множества элементарных событий можно взять любое множество.
Потому что в множестве всех подмножеств данного множества будут элементы, объединение которых даст третий элемент оного (сконструированного таким образом) множества. Что для элементарных событий недопустимо. Собственно, можно просто рассмотреть множество такого вида: {2,3,{2,3}}. У него есть подмножество, которое совпадает с одним из его элементов. Как это бьётся с элементарными событиями, по-Вашему? {2,3} нельзя объявлять ЭЛЕМЕНТАРНЫМ событием, оно же получается обусловленным.
Спрашивающему подогнали сына, сколько их не важно, все определяется монетой.
Так если подогнали из той самой аудитории, где 150 детей — как раз 1/3 и получится.
А вот сыну инкранировать больше тел где есть пары
Сын уже инкарнировал (если уж его спрашивают). Сколько там кого сидит в аудитории — для него значения не имеет. Он просто в курсе, что мог быть один, а мог иметь брата/сестру — и всё решала монетка. Отсюда вероятность 1/2.
Нет, это так не работает. Если вы бросаете монетку два раза, то элементарные события будут вида «монетка1 выпала Х, и монетка2 выпала Y». Броски монетки по отдельности элементарными событиями не будут.
Не-элементарное событие состоит из элементарных. То есть, требует наличия (или исключения) более чем одного элементарного события. Вы с этим согласны?
А математически — нет.
Вопрос моделирования. Вы всегда можете создать некую свою теорию, которая будет очень стройной и непротиворечивой. Только не называйте её тогда теорией вероятностей.
Все верно, так это и работает. Элементарные события — это элементы множества, а «просто события» — это подмножества множества, то есть множества, состоящие из элементарных событий в качестве элементов. Вам же, с-но, это и говорили.
Так я ж не против. Но тогда вот это моё рассуждение: habr.com/ru/post/446716/#comment_20031010
… остаётся в силе. И множество всех подмножеств некоего множества как множество элементарных событий определить нельзя.
После того, как Вы определили элементарные события через исходы, Вы в исходах больше не нуждаетесь. Все возможные (не элементарные) события описываются через элементарные. Поэтому исходы Вам, собственно, и не нужны — Вы можете о них даже ничего не знать (пока монетка не выпадет на ребро, Вы этот исход не будете никак учитывать и это не будет ошибкой, пока это событие не произойдёт).
То, что «шар», «шар в коробке» и «шар в коробке в коробке» не одно и то же — я понимаю :-) Равно как и то, что исход и событие (выпадение монетки орлом и выпадение данной конкретной монетки в данном конкретном испытании орлом соответственно) тоже не одно и то же.
Я не согласен с тем, что не-элементарное событие — как элементарное — «состоит из исходов». Оно состоит из элементарных событий. Да, собственно, Вы сами об этом пишете:
События — это множества элементарных событий.
Рассмотрим событие «монетка выпала орлом». Теперь проведём следующее испытание и получим (например) что «опять монетка выпала орлом». Имеем два элементарных события, которые можно объединить в третье, не-элементарное: «монетка выпала орлом и монетка опять выпала орлом». Это третье событие состоит из двух «предыдущих» даже чисто физически (если Вы подбрасываете реальные монетки в реальном мире). Исходы тут уже не участвуют, они могут вообще не определены. Пример: событие «вы почистили апельсин и его съели» состоит из двух событий: «вы почистили апельсин» и «вы его съели». Для получения конечного события требуется наличие обоих двух предыдущих и это всё.
То есть, если Вы рассматриваете как элементарные события НЕ элементы 2,3 и т.д. — А множества {2}, {3} и т.д. — то в качестве НЕ элементарных событий Вам тоже придётся рассматривать не {{2,3}} (например), а {{2},{3}}. То, что в моём рассуждении выше было «просто элементом», теперь есть множество. содержащее в себе этот элемент. Но на конечном выводе это никак не скажется.
События — это множества элементарных исходов. Это касается и элементарных событий. То есть, элементарные события — это {{2}}, {{3}} и {{2,3}} (исходы являются множествами, поэтому события — множества множеств). Их объединение даст событие {{2}, {3}, {2,3}}.
Да с чего бы это?.. Мой оппонент (которого Вы поддержали) утверждал, что элементарным событием можно объявить элемент любого множества:
Угу. Понятие элементарного события определите, сначала.
Берете любое множество и объявляется его элементы — элементарными событиями.
Как я только что показал — нет, не любого. Или придётся распрощаться с понятием элементарного события (как исключающего любые другие элементарные события и несводимого к ним)…
Вот есть множество {1,2,3,4}. Мы конструируем множество всех его подмножеств.
Очевидно, у конструируимого нами множества будут элементы {2}, {3} и {2,3}. С этим Вы согласны?
Вы утверждаете, что эти элементы можно определить как элементарные события. Я Вас правильно понял?
Но элементарные события взаимоисключающие. И ни одно из них не может быть сведено к некой комбинации других элементарных событий — на то события и элементарные.
ВОПРОС: можно ли представить событие {2,3} как некую комбинацию событий {2} и {3}? Есть ли между ними какая-то обусловленность?
Если да — Ваше утверждение разваливается. Мы имеем дело НЕ с элементарными событиями.
Если нет — если Вы так утверждаете — тогда я предложу Вам в конечном, сконструированном множестве объединить его элементы: сначала {2} и {2,3}, затем {2,3} и {3}. Если элементы (читай: события) {2}, {3} и {2,3} независимы, результат не может получится одинаков — объединение РАЗНЫХ элементов не может дать один и тот же результат. Если же он получится (по-Вашему) разным, тогда Вам придётся признать в конечном, сконструированном множестве существование подмножеств {2,2,3} и {2,3,3}. То есть, присуствие в конечном сконструированном множестве одинаковых неразличимых элементов. Что уже прямо противоречит аксиоматике теории множеств: один и тот же элемент не может входить в одно и то же множество более одного раза.
Если один показ одного баннера одному пользователю стоит 1 цент, а сделка получается с 10000 таких показов — то 9999 пользователей увидели то, что им не нужно. Но иначе сделки не будет. А если средний чек по ней, кажем, 1000 долларов — ну извините. Вам эти баннеры куда только не засунут.
Ошибка выжившего, взгляд с другой стороны.
И:
Противоречия между этими двумя утверждениями не видите?.. Так «отождествляют» или «когда говорят»?
Мне непонятно, с чёго Вы взяли что эта модель будет адекватно описывать случайные явления если множество Х — ВООБЩЕ ЛЮБОЕ.
1) элементарные события и события (были изначально)
2) исходы (появились недавно)
3) элементарные исходы (появились только что)
Ваша армия растёт :-)
Нет. Никаких «только». Я считаю, что событие «игральная кость выпала чётным числом» есть комбинация ЭЛЕМЕНТАРНЫХ событий «игральная кость выпала цифрой 2», «игральная кость выпала цифрой 4», «игральная кость выпала цифрой 6». Операция ИЛИ, объединение. Что именно произошло? Произошло ОДНО ИЗ этих трёх событий. Не-элементарное событие, сводимое к трём элементарным.
Ваша иллюстрация с шарами красивая и гибкая, но запутывает дело, ибо в ней изначально нет этой самой однозначности (то самое «только»). С игральной костью всё проще.
Потому что в реальности такое сделать нельзя. Вы можете дописать ко множеству элементарных событий «монетка выпала орлом» и «монетка выпала решкой» ещё и «монетка выпала на ребро». Но дописать туда же «элементарное» событие «монетка выпала ИЛИ орлом ИЛИ решкой» — уже нет. Если в Вашей модели Вы такое делаете — она перестаёт описывать случайные события.
{О, Р,{О, Р}} — как Вы себе это представляете в виде ВЗАИМОИСКЛЮЧАЮЩИХ событий? Если монетка выпала ИЛИ орлом, ИЛИ решкой — это ЕДИНОЕ событие! — как это ИСКЛЮЧИТ выпадение монетки орлом (или решкой)?
habr.com/ru/post/446716/#comment_20025046
Я Вам предложил вариант, который опровергает ПЕРВОЕ Ваше утверждение. Вы же ТЕПЕРЬ хотите конструировать события из исходов и рассматривать именно множество ИСХОДОВ. Ну Вы уж разберитесь сначала, как говорят в таких случаях — чем Вы оперируете, элементарными событиями или исходами.
Я в курсе :-) но если события конструируются из элементарных событий (на чём я настаиваю), то достаточно {4} U {5} = {4, 5} чтобы НЕ ВСЯКОЕ множество элементов можно было рассматривать как множество элементарных событий.
Вопрос, собственно, в следующем. Вот есть множество, элементы которого приняты за элементарные события. Например, {1,2,3,4,5,6}. Шесть возможных элементарных событий. Может ли подмножество этого множества, например, {4,5}, тоже быть элементарным событием?
Если нет — что Вы будете делать с множеством {1,2,3,4,5,6,{4,5}}?.. Если да — это будет противоречить определению элементарного события (оно не должно сводиться к другим элементарным событиям, а {4,5} получается объединением элементов 4 и 5).
По смыслу — игральная кость может выпасть одной из шести цифр вверх. Каждый такой вариант (исход) — элементарное событие. Есть также событие, когда игральная кость выпадает ИЛИ цифрой 4 вверх, ИЛИ цифрой 5 — этот факт можно зарегистрировать и передать как информацию. Но это событие уже не будет элементарным. Добавлять его к множеству элементарных событий нельзя.
А чем тогда будет регистрация И первого из этих событий И второго? Очевидно, тоже событием, третьим — уже не элементарным. Состоящим из двух элементарных, указанных выше.
Потому что она не будет адекватно описывать целый ряд случайных явлений. Например:
habr.com/ru/post/446716/#comment_20030180
(см. внизу коммента про пари).
Потому что в множестве всех подмножеств данного множества будут элементы, объединение которых даст третий элемент оного (сконструированного таким образом) множества. Что для элементарных событий недопустимо. Собственно, можно просто рассмотреть множество такого вида: {2,3,{2,3}}. У него есть подмножество, которое совпадает с одним из его элементов. Как это бьётся с элементарными событиями, по-Вашему? {2,3} нельзя объявлять ЭЛЕМЕНТАРНЫМ событием, оно же получается обусловленным.
Сын уже инкарнировал (если уж его спрашивают). Сколько там кого сидит в аудитории — для него значения не имеет. Он просто в курсе, что мог быть один, а мог иметь брата/сестру — и всё решала монетка. Отсюда вероятность 1/2.
В случае ОДНОГО моряка — ИЛИ одиночка, ИЛИ пара. Другая ситуация.
Вопрос моделирования. Вы всегда можете создать некую свою теорию, которая будет очень стройной и непротиворечивой. Только не называйте её тогда теорией вероятностей.
Так я ж не против. Но тогда вот это моё рассуждение:
habr.com/ru/post/446716/#comment_20031010
… остаётся в силе. И множество всех подмножеств некоего множества как множество элементарных событий определить нельзя.
После того, как Вы определили элементарные события через исходы, Вы в исходах больше не нуждаетесь. Все возможные (не элементарные) события описываются через элементарные. Поэтому исходы Вам, собственно, и не нужны — Вы можете о них даже ничего не знать (пока монетка не выпадет на ребро, Вы этот исход не будете никак учитывать и это не будет ошибкой, пока это событие не произойдёт).
Я не согласен с тем, что не-элементарное событие — как элементарное — «состоит из исходов». Оно состоит из элементарных событий. Да, собственно, Вы сами об этом пишете:
Рассмотрим событие «монетка выпала орлом». Теперь проведём следующее испытание и получим (например) что «опять монетка выпала орлом». Имеем два элементарных события, которые можно объединить в третье, не-элементарное: «монетка выпала орлом и монетка опять выпала орлом». Это третье событие состоит из двух «предыдущих» даже чисто физически (если Вы подбрасываете реальные монетки в реальном мире). Исходы тут уже не участвуют, они могут вообще не определены. Пример: событие «вы почистили апельсин и его съели» состоит из двух событий: «вы почистили апельсин» и «вы его съели». Для получения конечного события требуется наличие обоих двух предыдущих и это всё.
То есть, если Вы рассматриваете как элементарные события НЕ элементы 2,3 и т.д. — А множества {2}, {3} и т.д. — то в качестве НЕ элементарных событий Вам тоже придётся рассматривать не {{2,3}} (например), а {{2},{3}}. То, что в моём рассуждении выше было «просто элементом», теперь есть множество. содержащее в себе этот элемент. Но на конечном выводе это никак не скажется.
Как я только что показал — нет, не любого. Или придётся распрощаться с понятием элементарного события (как исключающего любые другие элементарные события и несводимого к ним)…
principal.su/links/organ-builders
Вот есть множество {1,2,3,4}. Мы конструируем множество всех его подмножеств.
Очевидно, у конструируимого нами множества будут элементы {2}, {3} и {2,3}. С этим Вы согласны?
Вы утверждаете, что эти элементы можно определить как элементарные события. Я Вас правильно понял?
Но элементарные события взаимоисключающие. И ни одно из них не может быть сведено к некой комбинации других элементарных событий — на то события и элементарные.
ВОПРОС: можно ли представить событие {2,3} как некую комбинацию событий {2} и {3}? Есть ли между ними какая-то обусловленность?
Если да — Ваше утверждение разваливается. Мы имеем дело НЕ с элементарными событиями.
Если нет — если Вы так утверждаете — тогда я предложу Вам в конечном, сконструированном множестве объединить его элементы: сначала {2} и {2,3}, затем {2,3} и {3}. Если элементы (читай: события) {2}, {3} и {2,3} независимы, результат не может получится одинаков — объединение РАЗНЫХ элементов не может дать один и тот же результат. Если же он получится (по-Вашему) разным, тогда Вам придётся признать в конечном, сконструированном множестве существование подмножеств {2,2,3} и {2,3,3}. То есть, присуствие в конечном сконструированном множестве одинаковых неразличимых элементов. Что уже прямо противоречит аксиоматике теории множеств: один и тот же элемент не может входить в одно и то же множество более одного раза.