
Чего «репу» чешешь?
На золотую рыбку другая сеть нужна!
Собственно, я собирался продолжить серию топиков, посвященных работе RTLS – системы позиционирования в реальном времени. А именно, рассказать о беспроводной инфраструктуре системы, основанной на сетях ZigBee. Но вдруг с удивлением обнаружил, что на Хабрахабре нет публикаций, посвященных стандарту IEEE 802.15.4 и спецификации ZigBee. Есть лишь немногочисленные упоминания, связанные с тем или иным приложением. Попытаюсь по мерее сил заполнить этот пробел.
В последнее время все большее распространение и значение приобретают беспроводные сенсорные сети. Сети, которые по своему назначению, параметрам, спецификациям существенно отличаются от сетей связи – WiFi, GSM, LTE и т.п. Среди прочих, используемых в сенсорных сетях, выделяется спецификация ZigBee – наиболее продвинутая надстройка к стандарту IEEE 802.15.4
В этом году исполнилось 10 лет со времени основания ZigBee альянса, а в октябре исполняется 5 лет с момента утверждения действующей в настоящее время спецификации ZigBee Pro Feature Set 2006. Так что публикацию можно считать юбилейной.
Желающих познакомиться с самоорганизующейся самовосстанавливающейся и не требующей специального частотного разрешения сенсорной сетью прошу под кат.
Начну с вынесенных в заголовок вопросов:
Зачем?
Во многих приложениях требуются беспроводные сети связи, не обладающие высокой скоростью передачи, но надежные, живучие (способные к самовосстановлению), простые в развертывании и эксплуатации. Важно также, чтобы оборудование таких сетей допускало длительную работу от автономных источников питания, имело низкую стоимость, и было компактным. Пример такого приложения – «умный дом».
Такому сочетанию требований еще 10 лет назад не отвечал ни один из сетевых стандартов, что и привело к созданию стандартов IEEE 802.15.4 и ZigBee, описывающих устойчивые масштабируемые многошаговые беспроводные сети, простые в развертывании и поддерживающие самые разные приложения.
Почему именно ZigBee?
Сети ZigBee, в отличие от других беспроводных сетей передачи данных, полностью удовлетворяют перечисленные выше требования, а именно:
а) благодаря ячеистой (mesh) топологии сети и использованию специальных алгоритмов маршрутиз��ции сеть ZigBee обеспечивает самовосстановление и гарантированную доставку пакетов в случаях обрыва связи между отдельными узлами (появления препятствия), перегрузки или отказа какого-то элемента;
б) спецификация ZigBee предусматривает криптографическую защиту данных, передаваемых по беспроводным каналам, и гибкую политику безопасности;
в) устройства ZigBee отличаются низким электропотреблением, в особенности конечные устройства, для которых предусмотрен режим «сна», что позволяет этим устройствам работать до трех лет от одной обычной батарейки АА и даже ААА;
г) сеть ZigBee – самоорганизующаяся, ее структура задается параметрами профиля стека конфигуратора и формируется автоматически путем присоединения (повторного присоединения) к сети образующих ее устройств, что обеспечивает простоту развертывания и легкость масштабирования путем простого присоединения дополнительных устройств;
д) устройства ZigBee компактны и имеют относительно невысокую стоимость.
Связь в сети ZigBee осуществляется путем последовательной ретрансляции пакетов от узла источника до узла адресата. В сети ZigBee предусмотрено несколько альтернативных алгоритмов маршрутизации, выбор которых происходит автоматически.
Стандарт предусматривает возможность использования каналов в нескольких частотных диапазонах. Наибольшая скорость передачи и наилучшая помехоустойчивость достигается в диапазоне от 2,4 до 2,48 ГГц. В этом диапазоне предусмотрено 16 каналов по 5 МГц.
Цена, которую пришлось заплатить в сетях ZigBee за минимизацию энергопотребления, компактность и дешеви��ну – относительно низкая скорость передачи данных.
«Брутто» скорость (включая служебную информацию) составляет 250 кбит/c. Средняя скорость передачи полезных данных, в зависимости от загрузки сети и числа ретрансляций, составляет от 5 до 40 кбит/с.
Расстояние между рабочими станциями сети составляет десятки метров внутри помещений и сотни метров на открытом воздухе. За счет ретрансляций покрываемая сетью зона может быть весьма значительной: до нескольких тысяч квадратных метров в помещении и до нескольких гектар на открытом пространстве. Более того, сеть ZigBee в любой момент может быть расширена добавлением новых элементов или наоборот разбита на несколько зон простым назначением соответствующего числа новых конфигураторов сети. Это бывает полезно для снижения нагрузки и соответственно повышения скорости передачи данных.
Немного истории
Альянс ZigBee был учрежден в 2002 году. Сейчас в него входят более 300 компаний. Цель альянса – разработка эффективных протоколов беспроводной сети и обеспечение совместимости устройств разных производителей. Первые стандарты «родились» в 2003 году и активно совершенствовались и расширялись.
Была внедрена стохастическая адресация, механизмы маршрутизации Many-to-One и Source Routing, а также возможность выявления асимметричных связей, что повысило эффективность сетей ZigBee для ряда специфических приложений.
Разработаны стандартные профили приложений и библиотека стандартных кластеров. Это существенно упростило разработку приложений, облегчило и ускорило внедрение новых решений с использованием аппаратуры разных производителей.
Введен ряд новых механизмов, повышающих защищенность и надежность сети.
Предусмотрен автоматический переход на «чистый» частотный канал при возникновении помех.
Действующая спецификация ZigBee Pro Feature Set 2006 принята в октябре 2007 г.
Устройства ZigBee
Сети ZigBee строятся из базовых станций трех основных типов: координаторов, маршрутизаторов и конечных устройств.
Координатор запускает сеть и управляет ею. Он формирует сеть, выполняет функции центра управления сетью и доверительного центра (trust-центра) – устанавливает политику безопасности, задает настройки в процессе присоединения устройств к сети, ведает ключами безопасности.
Маршрутизатор транслирует пакеты, осуществляет динамическу�� маршрутизацию, восстанавливает маршруты при перегрузках в сети или отказе какого-либо устройства. При формировании сети маршрутизаторы присоединяются к координатору или другим маршрутизаторам, и могут присоединять дочерние устройства – маршрутизаторы и конечные устройства. Маршрутизаторы работают в непрерывном режиме, имеют стационарное питание и могут обслуживать «спящие» устройства. Маршрутизатор может обслуживать до 32 спящих устройств.
Конечное устройство может принимать и отправлять пакеты, но не занимается их трансляцией и маршрутизацией. Конечные устройства могут подключаться к координатору или маршрутизатору, но не могут иметь дочерних устройств.
Конечные устройства могут переводиться в спящий режим для экономии заряда аккумуляторов. Именно конечные устройства имеют дело с датчиками, локальными контроллерами и исполнительными механизмами.
Формирование сети
Сеть ZigBee – самоорганизующаяся, и ее работа начинается с формирования. Устройство, назначенное при проектировании координатором персональной сети (PAN координатор), определяет канал, свободный от помех, и ожидает запросов на подключение.
Устройства, пытающиеся присоединиться к сети, рассылают широковещательный запрос. Пока PAN координатор – единственное устройство в сети, отвечает на запрос и предоставляет присоединение к сети только он. В дальнейшем присоединение к сети могут предоставлять также присоединившиеся к сети маршрутизаторы.
Устройство, получившее ответ на широковещательный запрос, обменивается с присоединяющим устройством сообщениями, чтобы определить возможность присоединения. Возможность определяется способностью присоединяющего маршрутизатора обслужить новые устройства в дополнение к ранее подключенным.
Вступление в сеть (присоединение)
Существует два способа присоединения: МАС ассоциация и повторное сетевое присоединение (NWK rejoin).
МАС ассоциация
МАС ассоциация доступна любому устройству ZigBee и осуществляется на МАС уровне. Механизм МАС ассоциации следующий:
Устройство, позволяющее присоединиться к нему, выставляет на МАС уровне разрешение на присоединение.
Устройство, вступающее в сеть, выставляет на МАС уровне запрос на присоединение и передает широковещательный запрос маячка.
Получив маячок от устройств, готовых подключить присоединяемое устройство, последнее определяет, в какую сеть и к какому устройству оно желает присоединиться, и выставляет на МАС уровне требование о вступлении с флажком «повторное присоединение» в значении FALSE.
Затем вступающее устройство направляет на выбранное для присоединения устройство запрос присоединения и получает ответ с присвоенным ему сетевым адресом.
При МАС ассоциации данные передаются не зашифрованными, поэтому МАС ассоциация не является безопасной.
Повторное сетевое присоединение Повторное сетевое присоединение вопреки названию может применяться и при первичном присоединении. Оно выполняется на сетевом уровне. При этом, если вступающее устройство знает текущий сетевой ключ, обмен пакетами может быть безопасным. Ключ может быть получен, например, при н��стройке.
При повторном подключении присоединяющееся устройство выставляет на сетевом уровне запрос присоединения и обменивается с подключающим устройством пакетами «запрос присоединения» – «ответ на запрос присоединения».
Динамика сети
Кроме случаев присоединения новых устройств структура сети меняется и в случаях, когда устройства покидают сеть и повторно присоединяться в других местах (это происходит, например, в случае перезагрузки устройства).
На рисунке ниже – пример переподключения. Устройство с адресом «0E3B» переподключается как «097D», а затем как «0260». Каждый раз оно присоединяется к другому маршрутизатору и получает адрес из имеющегося в распоряжении присоединяющего маршрутизатора диапазона адресов.

Переподключение конечного устройства в древовидной сети
Сетевые протоколы
Протоколы, регламентированные стандартами IEEE 802.15.4 и ZigBee 2007 Specification, обеспечивают формирование и функционирование беспроводной сенсорной сети.
Стандарт IEEE 802.15.4 определяет физический и MAC уровни, а спецификация ZigBee определяет сетевой уровень и уровень приложений. На рисунке показан стек протоколов ZigBee.
Стек протоколов ZigBee
Прошу извинить, но на этом месте я в связи с поздним временем вынужден прерваться. Описание стека протоколов можно посмотреть здесь: http://www.rtlsnet.ru/technology/view/3.
Если хабравчане выкажут заинтересованность темой, обязуюсь описать профиль стека, варианты топологии сети, алгоритмы маршрутизации, профили приложений, кластеры, конечные точки, привязки, а также обеспечение безопасности. То есть рассказать, как, собственно, формируется топология, строятся и восстанавливаются маршруты, как подключаются и программируются стандартным образом внешние устройства – датчики, контроллеры, исполнительные механизмы.