Хабр Курсы для всех
РЕКЛАМА
Практикум, Хекслет, SkyPro, авторские курсы — собрали всех и попросили скидки. Осталось выбрать!
Насчет ImageNet да, чего-то прорывного и быстросходящегося пока не придумали… но, например, для физиономий пацаны из Google/Facebook тренировались десяткаях и сотнях миллионов картинок, а потом до задачи идентификации лиц дотунялись руки у Андрея Зисермана и он уделал всех, натренировавшись на базе всего из ~1 миллиона изображений лиц…
Про Deep Face Recognition от чуваков из VGG. Работа уже старенькая, но результаты впечатляют, учитывая разницу в размере датасетов. Наглядный пример того, как университетская исследовательская группа уделала IT-гигантов… хотя, это скорей исключение из правил)


Сверх-глубокие сети на 1000+ слоев пока не получается тренировать на картинках разрешения тех, что в ImageNet (тупо не тянет железо), поэтому сравнивать их с описанными решениями тяжело. Их тренируют на CIFAR-10 и CIFAR-100, где картинки 32x32.
only half of the videos are tracked due to deadline limits, others are only detected by Faster RCNN (VGG16) without tempor smooth.

Эволюция нейросетей для распознавания изображений в Google: Inception-ResNet