Pull to refresh

Comments 11

Рад, что вы так считаете! Буду стараться дальше.
autoencoder.fit(x_train, x_train,
                epochs=50,
                batch_size=256,
                shuffle=True,
                validation_data=(x_test, x_test))

Кажется, здесь ошибка:


  • x_train, x_train -> x_train, y_train
  • x_test, x_test -> x_test, y_test
Энкодер восстанавливает вход на выходе, это не задача классификации. А «y» тут вообще не нужны нигде (до conditional моделей), в «у» просто лейблы цифр лежат.
Спасибо, отличные статьи. Жду продолжения.
UFO just landed and posted this here

это размеры изображения свойственны датасету MNIST. каждая картинка имеет размерность 28x28.
изменить, конечно, можно, но для MNIST код уже не рабочим будет.
вот цитата из следующией статьи из этой серии: Изображения цифр mnist (на которых примеры в прошлой части) — это элементы 28*28=784-мерного пространства, как и вообще любое монохромное изображение 28 на 28.

UFO just landed and posted this here

Наверное, вы уже разобрались, но вдруг кому-то поможет.


Сверточный енкодер уменьшает размеры изображения до (7,7) благодаря слоям MaxPooling2D, каждый из которых уменьшает размер в (2,2) раз.


Сверточный декодер разворачивает код (7,7) до (28,28) благодаря двум слоям UpSampling2D, каждый из которых увеличивает размер в (2,2) раз.

Sign up to leave a comment.

Articles