Эпиграф

В России, направление систем распознавания речи действительно развито довольно слабо. Google давно анонсировала систему записи и распознавания телефонных разговоров… Про системы похожего масштаба и качества распознавания на русском языке, к сожалению, я пока не слышал.

Но не нужно думать, что за рубежом все уже все давно открыли и нам их никогда не догнать. Когда я искал материал для этой серии, пришлось перерыть тучу зарубежной литературы и диссертаций. Причем статьи и диссертации эти были замечательных американских ученых Huang Xuedong; Hisayoshi Kojima; DongSuk Yuk и др. Понятно, на ком эта отрасль американской науки держится? ;0)

В России я знаю только одну толковую компанию, которой удалось вывести отечественные системы распознавания речи на коммерческий уровень: Центр речевых технологий. Но, возможно, после этой серии статей кому-нибудь придет в голову, что заняться разработкой таких систем можно и нужно. Тем более, что в плане алгоритмов и мат. аппарата мы практически не отстали.

image

Классификация систем распознавания речи



На сегодняшний день, под понятием “распознавание речи” скрывается целая сфера научной и инженерной деятельности. В общем, каждая задача распознавания речи сводится к тому, чтобы выделить, классифицировать и соответствующим образом отреагировать на человеческую речь из входного звукового потока. Это может быть и выполнение определенного действия на команду человека, и выделение определенного слова-маркера из большого массива телефонных переговоров, и системы для голосового ввода текста.



Признаки классификации систем распознавания речи

Каждая такая система имеет некоторые задачи, которые она призвана решать и комплекс подходов, которые применяются для решения поставленных задач. Рассмотрим основные признаки, по которым можно классифицировать системы распознавания человеческой речи и то, как этот признак может влиять на работу системы.
  • Размер словаря. Очевидно, что чем больше размер словаря, который заложен в систему распознавания, тем больше частота ошибок при распознавании слов системой. Например, словарь из 10 цифр может быть распознан практически безошибочно, тогда как частота ошибок при распознавании словаря в 100000 слов может достигать 45%. С другой стороны, даже распознавание небольшого словаря может давать большое количество ошибок распознавания, если слова в этом словаре очень похожи друг на друга.
  • Дикторозависимость или дикторонезависимость системы. По определению, дикторозависимая система предназначена для использования одним пользователем, в то время как дикторонезависимая система предназначена для работы с любым диктором. Дикторонезависимость – труднодостижимая цель, так как при обучении системы, она настраивается на параметры того диктора, на примере которого обучается. Частота ошибок распознавания таких систем обычно в 3-5 раз больше, чем частота ошибок дикторозависимых систем.
  • Раздельная или слитная речь. Если в речи каждое слово разделяется от другого участком тишины, то говорят, что эта речь – раздельная. Слитная речь – это естественно произнесенные предложения. Распознавание слитной речи намного труднее в связи с тем, что границы отдельных слов не четко определены и их произношение сильно искажено смазыванием произносимых звуков.
  • Назначение. Назначение системы определяет требуемый уровень абстракции, на котором будет происходить распознавание произнесенной речи. В командной системе (например, голосовой набор в сотовом телефоне) скорее всего, распознавание слова или фразы будет происходить как распознавание единого речевого элемента. А система диктовки текста потребует большей точности распознавания и, скорее всего, при интерпретации произнесенной фразы будет полагаться не только на то, что было произнесено в текущий момент, но и на то, как оно соотносится с тем, что было произнесено до этого. Также, в системе должен быть встроен набор грамматических правил, которым должен удовлетворять произносимый и распознаваемый текст. Чем строже эти правила, тем проще реализовать систему распознавания и тем ограниченней будет набор предложений, которые она сможет распознать.


Схема методов классификации систем распознавания речи

Различия методов распознава��ия речи

При создании системы распознавания речи требуется выбрать, какой уровень абстракции адекватен поставленной задаче, какие параметры звуковой волны будут использоваться для распознавания и методы распознавания этих параметров. Рассмотрим основные различия в структуре и процессе работы различных систем распознавания речи.
  • По типу структурной единицы. При анализе речи, в качестве базовой единицы могут быть выбраны отдельные слова или части произнесенных слов, такие как фонемы, ди- или трифоны, аллофоны. В зависимости от того, какая структурная часть выбрана, изменяется структура, универсальность и сложность словаря распознаваемых элементов.
  • По выделению признаков. Сама последовательность отсчетов давления звуковой волны – чрезмерно избыточна для систем распознавания звуков и содержит много лишней информации, которая при распознавании не нужна, либо даже вредна. Таким образом, для представления речевого сигнала из него требуется выделить какие-либо параметры, адекватно представляющие этот сигнал для распознавания.
  • По механизму функционирования. В современных системах широко используются различные подходы к механизму функционирования распознающих систем. Вероятностно-сетевой подход состоит в том, что речевой сигнал разбивается на определенные части (кадры, либо по фонетическому признаку), после чего происходит вероятностная оценка того, к какому именно элементу распознаваемого словаря имеет отношение данная часть и (или) весь входной сигнал. Подход, основанный на решении обратной задачи синтеза звука, состоит в том, что по входному сигналу определяется характер движения артикуляторов речевого тракта и, по специальному словарю происходит определение произнесенных фонем.


UPD: Перенес в «Искуственный интеллект». Если будет интерес, дальше публиковать буду в нем.