В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Поскольку трансформатор имеет много взаимозависимых параметров, расчет ведут по шагам, уточняя при необходимости исходные данные.
1. Как определить число витков и мощность?
Габаритная мощность, полученная из условия не перегрева обмотки, равна [1]:
Pгаб = So ⋅ Sc ⋅ f ⋅ Bm / 150 (1)
Где: Pгаб - мощность, Вт;
Sc - площадь поперечного сечения магнитопровода, см2 ;
So - площадь окна сердечника, см2;
f - частота колебаний, Гц;
Bm = 0,25 Тл - допустимое значение индукции для отечественных никель-марганцевых ферритов на частотах до 100 кГц.
Максимальную мощность трансформатора выбираем 80% от габаритной:
Pmax = 0,8 ⋅ Pгаб (2)
Минимальное число витков первичной обмотки n1 определяется максимальным напряжением на обмотке Um и допустимой индукцией сердечника Bm:
n1 = ( 0,25 ⋅ 104 ⋅ Um ) / ( f ⋅ Bm ⋅ Sc ) (3)
Размерности единиц здесь те же, что и в формуле (1).
Плотность тока в обмотке j для трансформаторов мощностью до 300 Вт принимаем 3..5 А/мм2 (большей мощности соответствует меньшее значение). Диаметр провода в мм рассчитываем по формуле:
d = 1,13 ⋅ ( I / j )1/2 (4)
Где I - эффективный ток обмотки в А.
Пример 1:
Для ультразвуковой установки нужен повышающий трансформатор мощностью 30..40 Вт. Напряжение на первичной обмотке синусоидальное, с эффективным значением Uэфф = 100 В и частотой 30 кГц.
Выберем ферритовое кольцо К28x16x9.
Площадь его сечения: Sc = ( D - d ) ⋅ h / 2 = ( 2,8 - 1,6 ) ⋅ 0,9 / 2 = 0,54 см2
Площадь окна: So = π ⋅ ( d / 2 )2 = π⋅ ( 1,6 / 2 )2 = 2 см2
Габаритная мощность: Pгаб = 0,54 ⋅ 2 ⋅ 30 ⋅ 103 ⋅ 0,25 / 150 = 54 Вт
Максимальная мощность: Pmax = 0,8 ⋅ 54 = 43,2 Вт
Максимальное напряжение на обмотке: Um = 1,41 ⋅ 100 = 141 В
Число витков: n1 = 0,25 ⋅104 ⋅ 141 / ( 30 ⋅ 103 ⋅ 0,25 ⋅ 0,54 ) = 87
Число витков на вольт: n0 = 87 / 100 = 0,87
Эффективное значение тока первичной обмотки: I = P / U = 40 / 100 = 0,4 A
Плотность тока выберем 5 А/мм2.
Тогда диаметр провода по меди: d = 1,13 ⋅ ( 0,4 / 5 )1/2 = 0,31 мм
2. Как уточнить плотность тока?
Если мы делаем маломощный трансформатор, то можем поиграть с плотностью тока и выбрать более тонкие провода, не опасаясь их перегрева. В книге Эраносяна [2, Стр.109] дана такая табличка:
Pн, Вт | 1 .. 7 | 8 .. 15 | 16 .. 40 | 41 .. 100 | 101 .. 200 |
j, А/мм2 | 7 .. 12 | 6 .. 8 | 5 .. 6 | 4 .. 5 | 4 .. 4,5 |
Почему плотность тока зависит от мощности трансформатора?
Выделяемое количество теплоты равно произведению удельных потерь на объем провода. Рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм2 [3].
3. Как уточнить число витков первичной обмотки?
Зная число витков первичной обмотки n вычислим ее индуктивность. Для тороида она определяется по формуле:
L = μ0 ⋅ μ ⋅ Sс ⋅ n2 / la (5)
Где:
Площадь Sс дана в м2;
средняя длина магнитной линии la в м;
индуктивность в Гн;
μ0 = 4π ⋅ 10-7 Гн/м - магнитная постоянная.
В инженерном виде эта формула выглядит так:
L = AL n2 (5А) , n = ( L / AL )1/2 (5Б)
Коэффициент AL и параметр мощности Sо ⋅ Sc для некоторых типов колец приведены в Таблице 2 [4,5,6]:
Кольцо | К7х4х2 | К10х6х3 | К10х6х4,5 | К16х10х4,5 | К20х12х6 | К32х20х6 | К38х24х7 | К40х25х11 |
AL , нГн/вит2 ± 25% | 224 | 310 | 460 | 430 | 620 | 570 | 650 | 1050 |
Sо ⋅ Sc , см4 | 0,004 | 0,017 | 0,025 | 0,106 | 0,271 | 1,131 | 2,217 | 4,050 |
Для работы трансформатора в качестве согласующего устройства должно выполнят��ся условие:
L > ( 4 .. 10 ) ⋅ R / ( 2 ⋅ π ⋅ fmin ) (6)
Где L - индуктивность в Гн;
R = U2эфф / Pн приведенное к первичной обмотке сопротивление нагрузки Ом;
fmin - минимальная частота, Гц.
В ключевых преобразователях в первичной обмотке трансформатора текут два тока: прямоугольный ток нагрузки Iпр = Um / R и треугольный ток намагничивания обмотки IT:
Для нормальной работы преобразователя величина треугольной составляющей не должна превышать 10% от прямоугольной, т.е индуктивность обмотки должна удовлетворять неравенству:
L > 5 R / f (7)
При необходимости число витков увеличивают или применяют феррит с большей μ. Чрезмерно завышать число витков в обмотке не желательно. Из-за роста межвитковой емкости на рабочей частоте могут возникнуть резонансные колебания.
Выбранный феррит должен иметь достаточную максимальную индукцию и малые потери в рабочей полосе частот. Как правило, на низких частотах (до 1 МГц) применяют феррит с μ = 1000 .. 6000 , а на радиочастотах приходиться использовать материалы с μ = 50 .. 400.
Пример 2:
Трансформатор из Примера 1 намотан на кольце К28х16х9 из никель-марганцевого феррита 2000НМ с магнитной проницаемостью μ = 2000.
Мощность нагрузки P = 40 Вт , эффективное напряжение первичной обмотки Uэфф = 100 В , частота f = 30 кГц. Уточним число его витков.
Приведенное сопротивление нагрузки: R = 1002 / 40 = 250 Ом
Площадь поперечного сечения магнитопровода: Sc = 0,54 см2 = 0,54 ⋅ 10 -4 м2
Средняя длина магнитной линии: la = π ( D +d ) / 2 = π ( 2,8 + 1,6 ) ⋅ 10 -2 / 2 = 6,9 ⋅ 10 -2 м
Коэффициент индуктивности: AL = 4π ⋅ 10-7 ⋅ 2000 ⋅ 0,54 ⋅ 10 -4 / 6,9⋅10-2 = 1966 нГн / вит2
Минимальная индуктивность первичной обмотки по формуле (6):
L = 10 ⋅ 250 / ( 2π ⋅ 3 ⋅ 104 ) = 13,3 мГн
Число витков: n = (13,3 ⋅ 10 -3 / 1,963 ⋅ 10 -6 ) 1/2 = 82
Оно даже меньше, чем рассчитанное ранее в Примере 1 nmin = 87.
Таким образом, условие достаточной индуктивности выполнено и число витков первичной обмотки n = 87.
4. Какие ферриты можно применить и почему?
Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая индукция B и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор. Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.
Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.
После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начин��ют бегать по некой замкнутой кривой (называемой петлей гистерезиса). На кривой отмечают характерные точки — индукцию насыщения Bs, остаточную индукцию Br и коэрцитивную силу Нс.

По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко) пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.
Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим. Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах. Частотные свойства ферритов характеризует критическая частота fc , при которой тангенс потерь достигает 0,1. Тепловые — температура Кюри Тс , при которой μ скачком уменьшается до 1.
Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала.
Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту fc. Но у него большие магнитные потери и невысокая температура Кюри.
Никель-марганцевый феррит имеет об��значение НМ. Проводимость его больше, поэтому fc низкая. Зато малы магнитные потери, температура Кюри выше, он меньше боится механических ударов.
Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.
Какие марки ферритов нам наиболее интересны?
Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.
Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.
Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.
Что касается допустимой индукции Bm, этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать Bm = 0,75 Вsmin. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения Bs при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить Bm до 0,2 Тл.
Основные параметры распространенных ферритов сведены в Таблицу 3:
Марка | 100НН | 400НН | 600НН | 1000 | 2000 | 2000 | 1000 | 1500 | 1500 |
μнач | 80..120 | 350.. | 500.. | 800.. | 1800.. | 1700.. | 800.. | 1200.. | 1200.. |
fc, МГц | 7 | 3,5 | 1,5 | 0,4 | 0,1 | 0,5 | 1,8 | 0,7 | 1,5 |
Tc, ℃ | 120 | 110 | 110 | 110 | 70 | 200 | 200 | 200 | 200 |
Bs, Тл | 0,44 | 0,25 | 0,31 | 0,27 | 0,25 | 0,38.. | 0,33 | 0,35.. | 0,35.. |
5. Насколько нагреется сердечник?
Потери в магнетике.
При частоте менее критической fс потери энергии в магнетике складываются в основном из потерь на перемагничивание, а вихретоковыми можно пренебречь.
Опыт и теория показывают, что потери энергии в единице объема (или массы) на одном цикле перемагничивания прямо пропорциональны площади петли гистерезиса. Следовательно мощность магнитных потерь:
PH = P0 ⋅ V ⋅ f (8)
Где:
P0 – удельные потери в единице объема (измеренные на частоте f0 при индукции B0 ) ;
V – объем образца.
Таблица 4. Удельные объемные потери в ферритах 2500НМС при f0 =16 кГц ; B0=0,2 Тл:
T , oC | P0 , мкВт / ( см 3 ⋅ Гц ) | |
2500НМС1 | 2500НМС2 | |
25 | 10,5 | 8,5 |
100 | 8,7 | 6 |
Однако, с ростом частоты индукция насыщения уменьшается, петля гистерезиса деформируется, а потери растут. Для учета этих факторов Штейнмец (C. P. Steinmetz, 1890-1892) предложил эмпирическую формулу:
PH = P1 ⋅ m ⋅ ( f / f1 ) α ( B / B1) β (9)
Условились [7, Стр.54], что f1 = 1 кГц, B1 = 1 Тл.
Величины P1, α, β и массу сердечника m указывают в справочнике.
Таблица 5. Удельные потери в некоторых ферритах
Марка | 1500НМ3 | 2000НМ1-А,Б | 2000НМ3 | 2000НМ-17 | 3000 | 6000НМ-1 | |||
f | - | 0,4..100 кГц | 0,1..1 МГц | - | 0,4..100 кГц | 0,1..1 МГц | 0,4..200 кГц | 20..50 кГц | 50..100 кГц |
P1, | 23,2 | 32±7 | 13±3 | 44,6 | 63±10 | 25±4 | 48±8 | 11±2 | 38±0,8 |
α | 1,2 | 1,2 | 1,4 | 1,3 | 1,2 | 1,4 | 1,2 | 1,35 | 1,6 |
β | 2,2 | 2,4 | 2,7 | 2,85 | 2,76 | 2,69 | 2,6 | ||
Потери в меди.
Омические потери в первичной обмотке при комнатной температуре и без учета скин-эффекта:
PM1 = I2 эфф ( ρ / Sm ) ( ( D - d ) + 2h ) ⋅ n1 (10)
Где:
Iэфф - эффективный ток,
D - внешний, d - внутренний диаметр кольца, h - его высота в метрах;
n1 - число витков; Sm - поперечное сечение провода, в мм2 ;
ρ = 0,018 Ом ⋅ мм2 / м - удельное сопротивление меди.
Суммарные потери во всех обмотках при повышенной температуре окружающей среды:
PM = ( PM1 + PM2 + .. )⋅ ( 1 + 0,004⋅ ( T - 25oC ) ) (11)
Общие потери в трансформаторе.
Потери в магнетике и меди:
PΣ = PH + PM (12)
Предполагаемая температура перегрева при естественной конвекции:
ΔT = PΣ / ( αm Sохл ) (13)
Где αm = (10..15) -4 Вт/(см2 oС) , Sохл = π /2 ( D2 - d2 ) + π h ( D + d )
Пример 3:
Найдем потери в трансформаторе из Примеров 1 и 2. Для простоты считаем, что вторичная и первичная обмотка одинаковые.
Эффективный ток первичной обмотки Iэфф = 0,4 А.
Потери в меди первичной обмотки:
PM1 = 0,42 ⋅ ( 0,018 / 0,08 ) ⋅ ( 28 - 16 + 18 ) ⋅ 10 -3 ⋅ 87 ≈ 0,1 Вт.
Потери в меди обеих обмоток: PM = 0,2 Вт.
Согласно справочным данным для феррита 2000НМ P1 = 32 Вт / кг ; α = 1,2 ; β = 2,4 ; масса сердечника К28х16х9 равна 20 грамм.
Потери в феррите: PH = 32 ⋅ ( 30 / 1 ) ⋅ 1,2 ⋅ ( 0,25 / 1 ) ⋅ 2,4 ⋅ 20 ⋅ 10 -3= 1,36 Вт
Суммарные потери в трансформаторе: PΣ = 1,56 Вт.
Ориентировочный КПД = ( 40 - 1,56 ) / 40 ⋅ 100% ≈ 96%
6. Как учесть инерционные свойства трансформатора?
На Рис.2. показана T-схема замещения трансформатора. В нее входят сопротивление источника ri , приведенное сопротивление нагрузки R = n2 Rн или R = Pн / U2эфф , где n = U1 / U2 - коэффициент трансформации, Uэфф - эффективное напряжение первичной обмотки.

Инерционные свойства трансформатора определяют малые индуктивности рассеяния Ls, индуктивность намагничивания Lμ (почти равна индуктивности первичной обмотки L1), параллельная емкость обмотки Сp (т.н. динамическая емкость) и последовательная емкость между обмотками Сп.
Как оценить индуктивности и емкости?
L1 рассчитывают по формуле (5) или измеряют экспериментально.
Согласно [8] индуктивность рассеивания по порядку величины равна Ls ~ L1 / μ.
Емкость Ср составляет примерно 1 пФ на виток.
Трансформатор работает подобно полосовому фильтру. На малых частотах он представляет собой ФВЧ с частотой среза ωн = R / Lμ.
На высоких частотах элементы Ls и Cp образуют ФНЧ с частотой среза ωв ≈ ( Ls Cp )-1/2
Последовательная емкость Сп невелика и на работу практически не влияет.
В модели есть два характерных резонанса:
Низкочастотный (резонанс намагничивания) в параллельном контуре Lμ Ср.
Его частота fμ ≈ ( 1/ 2 π ) ⋅ (Lμ Cp )-1/2 , а добротность
Qμ ≈ ( ri || R ) ⋅ ( Lμ / Cp)-1/2 (14)
Высокочастотный (резонанс рассеивания) в контуре, образованном Ls и Cр.
Его частота fs ≈ ( 1/ 2 π ) ⋅ (Ls Cp )-1/2 , а добротность Qs ≈ ( Ls / Cp)1/2 / ri (15)
Как влияют резонансы обмотки?
Амплитудно-частотная характеристика трансформатора похожа на АЧХ полосового фильтра, но на ее верхнем краю резонанс fs дает характерный пик.
Реакция же на импульсы напряжения зависит от способа включения источника и величин сопротивлений схемы.
При малом внутреннем сопротивлении источника ri проявляется лишь резонанс fs в виде характерного "звона" на фронтах импульсов.
Если же источник подключается через ключ, то при его размыкании могут возникать интенсивные колебания с частотой fμ.

7. Экспериментальное измерение параметров импульсного трансформатора.
Для пробы было взято кольцо из феррита 3000НМ размера К10х6х2. Первичная обмотка составляла 21 виток; вторичная 14; коэффициент трансформации n = 1,5 ; сопротивление нагрузки равнялось 4,7 кОм; источником служил генератор прямоугольных импульсов на TTL микросхемах с уровнем 6В, частотой 1 МГц и внутренним сопротивлением ri ≈ 200 Ом.
Рассчитаем теоретические параметры:
Sc = 4 ⋅ 10 -6 м2 , la = 25,13 ⋅ 10 -3 м , AL теор = 600 нГн / вит2 , L1теор = 0,6 ⋅ 212 = 265 мкГн, Ls теор ≈ 265/3000 = 0,09 мкГн , Сp теор ≈ 21+14 = 35 пФ.
Приведенное сопротивление нагрузки R = n2 Rн = 2,25 ⋅ 4,7 ~ 10 кОм.
Результаты из��ерений индуктивностей прибором АКИП-6107:
L1 = 269 мкГн , L2 = 118 мкГн , закоротив вторичную обмотку получим 2Ls = 6,8 мкГн, что на два порядка выше ее теор оценки.
Динамическую емкость Cp можно оценить по формуле (15), подав на трансформатор прямоугольные импульсы и измерив при помощи осциллографа период колебаний "звона" на фронтах импульсов на выходе вторичной обмотки. Частота "звона" fs оказалась 18,5 МГц , что дает Ср ≈ 21 пФ и неплохо согласуется с теор оценкой.
Для сравнения с опытом эквивалентная схема с измеренными параметрами моделировалась в программе LT Spice.


Итак, модель, построенная на основе измеренных Lμ , Ls и Cp вполне согласуется с экспериментом.
Теоретическая оценка [8] емкости 1 пФ на виток для малых колец приемлема, но оценка индуктивности рассеяния на два порядка расходится с фактической. Ее проще определять на опыте.
Приложение 1. Вывод формулы для числа витков.
При подаче напряжения U на обмотку в ней возникнет ЭДС индукции E:
U = -E = n Sc dB / dt
Для синусоидального напряжения с амплитудой Um:
Um = n Sc ω Bm
Откуда число витков: n = Um / ( Sc ω Bm )
Выразив круговую частоту через обычную, а площадь в см2 получим инженерную формулу:
n = 0,16 ⋅ 104 / ( f ⋅ Bm⋅ Sc )
Для прямоугольного напряжения величиной Um приращение индукции:
dB = dt Um / ( n Sc )
Интегрируя ее по времени от 0 до T/2 и учитывая, что за половину периода поле изменится от -Bm до +Bm получим: 2Bm = ( T / 2) Um / ( n Sc )
Выразив период через частоту, а площадь в см2 получим инженерную формулу:
n = 0,25 ⋅104 / ( f ⋅ Bm ⋅ Sc )
Она пригодна для обоих случаев.
Приложение 2. Вывод формулы для габаритной мощности трансформатора.
Согласно закону электромагнитной индукции Фарадея связь напряжения на катушке с изменением магнитной индукции в ней:
U dt = n Sc dB
За время от 0 до T/2 индукция изменится от -Bm до +Bm. Интегрируя в этих пределах получим среднее напряжение:
Uср = 4n ⋅ Sc ⋅ Bm ⋅ f
Где:
Но приборы измеряют не среднее, а действующее напряжение, которое эквивалентно постоянному по энергии. Связь среднего и действующего напряжения дает коэффициент формы кф = Uэфф / Uср . Для меандра он равен 1, для синуса 1,11.
Отсюда эффективное напряжение на катушке:
Uэфф = 4 ⋅ кф ⋅ n ⋅ Sc ⋅ Bm ⋅ f
Габаритную мощность оценим из следующих соображений. Частота f не велика, потери на вихревые токи и перемагничивания малы и мощность ограничена лишь перегревом обмотки. Его определяет максимальная плотность тока j , одинаковая для обоих обмоток.
Определим габаритную мощность как полусумму мощностей первичной и вторичной обмоток.
Pгаб = ( P1+P2 ) / 2 = ( Uэфф1⋅ I1 + Uэфф2 ⋅ I2 ) / 2 = j ( S1 n1 + S2 n2 ) 4 кф Sc Bm f / 2
Где S1 и S2 площади витка первичной и вторичной обмоток.
Это соотношение можно записать через площадь меди Sm:
Pгаб = 2⋅ кф ⋅ f ⋅ Sc ⋅ Sm ⋅ Bm ⋅ j
Площадь меди связывают с коэффициентом заполнения окна σ = Sm / Sо.
Сигма это некий эмпирический коэффициент, равен минимум 0,15 для однослойной обмотки и максимум 0,4 для многослойной (больше не поместится).
В итоге наша формула имеет вид:
Pгаб = 2 ⋅ кф ⋅ σ⋅ f ⋅ Sc⋅ Sо ⋅ Bm ⋅ j
Все величины здесь в СИ.
Допустим, что напряжение имеет форму меандра, кф = 1. Выбирая плотность тока j = 2,2 А / мм2 ; коэффициент заполнения σ = 0,15 ; выразив площади в см2 ; Bm в Тл ; частоту в Гц получим расчетную формулу:
Pгаб = Sc ⋅ So ⋅ f ⋅ Bm / 150
Как видно, эта формула выведена с большим запасом, реально можно получить с трансформатора и большую мощность.
Литература.
Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 - 37, 44.
Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,— 176 с: ил.
С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. - М.: Горячая линия-Телеком, 2013. — 359 с.: ил.
А. Петров "Индуктивности, дроссели, трансформаторы "// Радиолюбитель, №12, 1995, с.10-11.
Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. - М.: Радио и связь, 1983. - 200 с., ил.
Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. - 327 с. : ил
Курс лекций "Импульсная техника" для студентов 4-го курса кафедры Радиофизики. Глава 3.
