Точность и полнота нейросетей
В своих разработках «Криптонит» использует искусственные нейронные сети. И мы продолжаем пояснять термины.
В машинном обучении precision (точность) и recall (полнота) являются двумя метриками, используемыми для оценки производительности алгоритмов классификации. Они численно показывают, насколько успешно классификатор отделяет объекты одного класса от другого.
Точность (P) измеряется как доля верно классифицированных объектов от общего числа положительных примеров (в которых классификатор счёл, что пример содержит объект данного класса).
Точность вычисляется по формуле P = TP / (TP + FP), где TP — количество истинно положительных примеров, а FP — количество ложноположительных примеров.
Полнота (R) показывает долю правильно классифицированных положительных примеров от общего числа истинно положительных примеров.
Формула для расчёта полноты: TP / (TP + FN), где FN — количество ложноотрицательных примеров.
При увеличении точности обычно уменьшается полнота и наоборот. Это связано с предсказаниями, которые классификатор делает при принятии решения о том, к какому классу отнести каждый пример. При выборе между точностью и полнотой необходимо учитывать конкретные требования задачи.
Если важно минимизировать ложные положительные прогнозы (неверно классифицированные негативные примеры), стоит ориентироваться на точность. Если важнее избегать пропуска положительных примеров (нужно минимизировать ложные отрицательные прогнозы), стоит ориентироваться на полноту.