
Десятки, а иногда и сотни тысяч событий в день. Каждое — потенциальная авария, а может, просто шум. L1-инженеру нужно решить: добавить событие к инциденту? Создать новый? А может, это часть уже закрытого? Или всё серьёзнее — и перед нами экосистемный сбой, затрагивающий десятки сервисов?
Раньше мы в МТС всё классифицировали вручную. Но при таком объёме и разнообразии инфраструктуры быстро поняли, что нужна автоматизация. Слишком велик риск пропустить важное, не найти корень проблемы, потратить драгоценные минуты в критический момент.
В поисках решения придумали использовать то, что есть: богатую разметку от дежурных инженеров, накопленную за годы наблюдений. Так начался наш путь к инструменту, который с помощью ML группирует события в осмысленные цепочки, распознаёт инциденты и помогает дежурным работать точнее, быстрее и спокойнее.
В этой публикации мы — Михаил Копытин, руководитель команды разработки, и Евгений Лачугин, руководитель экосистемной команды поддержки в МТС Web Services — расскажем, как построили решение, какие архитектурные решения приняли, какие грабли собрали и как достигли точности выше 80%.