Pull to refresh

This is Science: 3D оптическая печать переезжает на микроуровень

Energy and batteries 3D printers Physics


Бум последних 5-7 лет – это различные виды 3D печати: будь то печать необходимых предметов в домашних условиях, печать человеческих органов или даже целых домов. Но что, если требуется напечатать конкретный материал, да ещё и в микромасштабах?

Пьезоэлектрики – вещества, способные генерировать электрический заряд и разность потенциалов при сжатии или растяжении. Они давно незаметно обосновались в быту: пьезоэлектрические зажигалки, сопла современных принтеров, да и чтобы мы делали без кварцевого резонатора в любой цифровой технике?!

Группа учёных из университета Калифорнии недавно опубликовала работу, в рамках которой предложила способ трёхмерной печати полимерными материалами с пьезоэлектрическими свойствами с помощью обычной оптической 3D-печати. Фактически данный метод печати – развитие лазерной стереолитографии, в котором тонкий слой вещества фотополимеризуется лазером точка за точкой. Однако основным отличием является разрешение: вплоть до 1 микрон, тогда как обычная литография даёт лишь 0.1 мм или 100 микрон.


a) Схема 3D оптической микропечати, позволяющая получать объекты разрешением в несколько микрон, b) сами кристаллы титаната бария, с) схема пришивки нанокристаллов к матрице

Плюс ко всему, печать производится не просто полимером, а композитным материалом, в котором в полимерной матрице распределены нанокристаллы титаната бария (BaTiO3) – одного из наиболее известных пьезоэлектрических материалов. При этом сама полимерная матрица химически связана с нанокристаллами, что позволяет сохранить пьезоэлектрические свойства при растяжении и сжатии, иными словами, титанат бария генерирует электрический заряд при изменении геометрии.


Примеры напечатанных двумерных структур

И хотя объёмный титанат бария позволяет генерировать до 200 пикоФ/Н, полученные для данного композитного материала 40 пикоФ/Н являются своеобразным рекордом. Чтобы лучше себе представлять уровень цифр, заявленные в статье 40 пикоФ/Н примерно соответствует разности потенциалов порядка 600-700 мВ при приложении силы всего в 10 Н, что не так уж и мало.


Примеры напечатанных трёхмерных структур, в том числе и сложной формы

К тому же, быстрая и дешёвая печать представленных выше ажурных трёхмерных волокон, вполне возможно, дало бы новый толчок к реализации умной одежды и получению электроэнергии при её ношении. И напоследок, технология может найти применение и при создании нового поколения струйных принтеров с гораздо лучшим разрешением за счёт уменьшения размера капли (и аналогичные работы уже ведутся, например).

Оригинальная статья в ACSNano (DOI: 10.1021/nn503268f)



Полный список опубликованных статей This is Science на GeekTimes:
This is Science: Простая и дешёвая солнечная энергетика
This is Science: Графен – жизнь или смерть?
This is Science: Вдувай и получай электроэнергию
This is Science: Кремниевая электроника: согни меня полностью!
This is Science: Эластичный дисплей на квантовых точках
This is Science: Поставить трибоэлектричество на службу человечеству
This is Science: 3D оптическая печать переезжает на микроуровень
This is Science: Что внутри нейроморфного чипа?
This is Science: Новости с графеновых полей
This is Science: 3D электронная литография в массы
This is Science: Разряд щелочных батареек или почему батарейка подпрыгивает
This is Science: микропушки и наноядра
This is Science: носимая электроника и трибоэлектричество. Часть 1
This is Science: носимая электроника и трибоэлектричество. Часть 2


Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале — милости просим;)
Tags:
Hubs:
Total votes 29: ↑28 and ↓1 +27
Views 15K
Comments Comments 2