Pull to refresh

ГИА — построение графиков функций со знаком модуля

Всем привет! Хотел бы сегодня объяснить такую тему, как построение графиков. Вероятно большинство знает, как строить простые графики функций, такие как y=x^2 или y=1/x. А как строить графики со знаком модуля?

Задача 1. Построить графики функций y=|x| y=|x-1|.
Решение. Сравним его с графиком функции y=|x|.При положительных x имеем |x|=x. Значит, для положительных значений аргумента график y=|x| совпадает с графиком y=x, то есть эта часть графика является лучём, выходящим из начала координат под углом 45 градусов к оси абсцисс. При x< 0 имеем |x|= -x; значит, для отрицательных x график y=|x| совпадает с биссектрисой второго координатного угла.
Впрочем, вторую половину графика (для отрицательных X) легко получить из первой, если заметить, что функция y=|x| — чётная, так как |-a|=|a|. Значит, график функции y=|x| симметричен относительно оси Oy, и вторую половину графика можно приобрести, отразив относительно оси ординат часть, начерченную для положительных x. Получается график:

y=|x|
image
Для построения берём точки (-2; 2) (-1; 1) (0; 0) (1; 1) (2; 2).

Теперь график y=|x-1|. Если А — точка графика у=|x| с координатами (a;|a|), то точкой графика y=|x-1| с тем же значением ординаты Y будет точка A1(a+1;|a|). (Почему?) Эту точку второго графика можно получить из точки А(a;|a|) первого графика сдвигом параллельно оси Ox вправо. Значит, и весь график функции y=|x-1|получается из графика функции y=|x| сдвигом параллельно оси Ox вправо на 1.

Построим графики:

y=|x-1|
image
Для построения берём точки (-2; 3) (-1; 2) (0; 1) (1; 0) (2; 1).

Это была простенькая задачка. Теперь то, что многих приводит в ужас.

Задача 2. Постройте график функции y=3*|x-4| — x + |x+1|.
Решение. Найдем точки, в которых подмодульные выражения обращаются в нуль, т.е. так называемые «критические» точки функции. Такими точками будут х=-1 и х=4. В этих точках подмодульные выражения могут изменить знак.

Пусть x<-1. Тогда х+1<0, |x+1|=-x-1; x-4<0, |x-4|=-x+4; Следовательно y= 3(-х+4)-х+(-х-1)= -5х+11.
Пусть -1< = x < = 4. Тогда х+1>0, |x+1|=x+1; x-4<0, |x-4|=-x+4; Следовательно y= 3(-х+4)-х+(х+1)= -3х+13.
Пусть х>4. Тогда х+1>0, |x+1|=x+1, x-4>0; |x-4|=x-4; Следовательно у= 3(х-4)-х+х+1= 3х-11.

Значит, нам нужно построить график функции (именно один)
{ у= -5х+11, при x<-1
{ y= -3х+13, при -1< = x < = 4.
{ y= 3х-11, при х>4
image
Для построения первого берём точки (1; 6) (2; 1)
Для построения второго берём точки (3; 4) (4; 1)
Для построения третьего берём точки (3; -2) (4; 1)


Ну и последняя на сегодня задача, которую мы разберём.
Задача 3. Построить график функции y= |1/4 x^2 — |x| — 3|.
Решение. Функция y= |f(|x|)| чётная. Нужно построить для x>=0 y= f(x) график функции, затем его симметрично отразить относительно оси Oy(это график y= |1/4 x^2 — x — 3|.), и, наконец, ту часть полученного графика, которая расположена в нижней полуплоскости, симметрично отразить относительно оси Ox (y= 1/4 x^2 — |x| — 3.).
Вот что из этого выйдет:

y= |1/4 x^2 — |x| — 3|
image

Итак, всем спасибо! Теперь мы получили ту базу знаний, необходимую для построения графиков со знаком модуля! А то его так все боятся.

Вот ссылка, которая поможет вам проверить ваши построения:

Tags:
Hubs:
You can’t comment this publication because its author is not yet a full member of the community. You will be able to contact the author only after he or she has been invited by someone in the community. Until then, author’s username will be hidden by an alias.