
Привет! Продолжу рассказ о том, как мы превращаем банк в «биг дата» — организацию. Очевидно, что чем больше данных использует компания, тем больше зависит от их качества. Но, зачастую, вопросам качества данных при разработке витрин уделяется недостаточно внимания. Это связано с тем, что требования к качеству данных не фиксируются в бизнес‑требованиях, а разработчик витрины/инженер данных не всегда досконально знает предметную область. Будущее — за организацией контрольных мероприятий в контуре бизнес‑заказчиков. Этот тренд получил название Self‑Service функции. У нас в Газпромбанке по такому принципу строится проверка качества данных для ML‑моделей. Каждому аналитику/разработчику моделей доступен функционал оценки качества данных любой витрины. Рассказываю, как выстроили такую схему работы.