Search
Write a publication
Pull to refresh
4
0

Пользователь

Send message

Рубрика «Читаем статьи за вас». Август 2017

Reading time18 min
Views16K

image


Привет, Хабр! С этого выпуска мы начинаем хорошую традицию: каждый месяц будет выходить набор рецензий на некоторые научные статьи от членов сообщества Open Data Science из канала #article_essence. Хотите получать их раньше всех — вступайте в сообщество ODS!
Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Читать дальше →

Эзотерический язык, транслирующийся в шаблоны C++

Reading time23 min
Views21K
КПДВ с примерами кода Шаблоны C++ — полный по Тьюрингу язык, на котором можно писать compile-time программы. Только вот синтаксис рассчитан на описание параметризованных типов и слабо приспособлен к ясному выражению чего-то более сложного. В этой статье рассмотрим, как типы и шаблоны становятся значениями и функциями, а также узнаем, к чему привела попытка автора создать свой функциональный язык, транслирующийся в шаблоны C++. Для прочтения текста знания в области функционального программирования почти не требуются.
Читать дальше →

Нейросетевая игра в имитацию

Reading time25 min
Views43K

Здравствуйте, коллеги. В конце 1960-ых годов прошлого века Ричард Фейнман прочитал в Калтехе курс лекций по общей физике. Фейнман согласился прочитать свой курс ровно один раз. Университет понимал, что лекции станут историческим событием, взялся записывать все лекции и фотографировать все рисунки, которые Фейнман делал на доске. Может быть, именно после этого у университета осталась привычка фотографировать все доски, к которым прикасалась его рука. Фотография справа сделана в год смерти Фейнмана. В верхнем левом углу написано: "What I cannot create, I do not understand". Это говорили себе не только физики, но и биологи. В 2011 году, Крейгом Вентером был создан первый в мире синтетический живой организм, т.е. ДНК этого организма создана человеком. Организм не очень большой, всего из одной клетки. Помимо всего того, что необходимо для воспроизводства программы жизнедеятельности, в ДНК были закодированы имена создателей, их электропочты, и цитата Ричарда Фейнмана (пусть и с ошибкой, ее кстати позже исправили). Хотите узнать, к чему эта прохладная тут? Приглашаю под кат, коллеги.

Читать дальше →

PyTorch — ваш новый фреймворк глубокого обучения

Reading time22 min
Views217K

Gotta Torch?


PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.


Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.

Fire walk with me

Материалы летней школы Deep|Bayes по байесовским методам в глубинном обучении

Reading time3 min
Views25K

Глубинное обучение в последние годы стало ключевым направлением исследований в машинном обучении. Начавшись с архитектурных прорывов, позволявших эффективно обучать глубокие нейросети, оно стало распространяться на другие подобласти, предоставляя набор эффективных средств там, где для решения задачи требуется приближение некоторой сложной функции.


Многие современные исследовательские статьи активно используют байесовский формализм в сочетании с глубокими нейросетями, приходя к интересным результатам. Мы – исследовательская группа BayesGroup с помощью наших друзей из Сколтеха, а так же при поддержке Высшей Школы Экономики, Сбербанка, Яндекса, Лаборатории Касперского, JetBrains и nVidia – решили поделиться накопленным опытом и устроить летнюю школу по байесовским методам в глубинном обучении Deep|Bayes, где подробно рассказать, что такое байесовские методы, как их комбинировать с глубинным обучением и что из этого может получиться.


Отбор на школу оказался весьма сложным занятием – мы получили более 300 заявок от сильных кандидатов, но вместить смогли только 100 (приятно, что среди участников были не только жители Москвы и Петербурга, но и студенты из регионов, а так же русскоговорящие гости из-за границы). Пришлось отказать многим сильным кандидатам, поэтому для смягчения этого прискорбного факта мы решили сделать доступными максимальное количество материалов, которыми и хотим поделиться с хабраюзерами.

Читать дальше →

Распределенное обучение нейронных сетей с MXNet. Часть 1

Reading time14 min
Views11K

Сегодня мы дадим ответ на простой вопрос: "Как работает распределённое обучение (в контексте MXNet)?"


Все примеры кода протестированные на MXNet v0.10.0 и могут не работать (или работать по-другому) в других версиях, однако полагаю, что общие концепции будут неизменимы еще долго.


Ну и последнее перед тем, как мы перейдем к основной части, я хочу выразить благодарность за помощь в написании статьи моим коллегам, без которых эта статья не была бы возможной:


  • Madan Jampani;
  • Suneel Marthi;

Еще хотел бы порекомендовать поднять машинку с DLAMI и выполнить все примеры из статьи самостоятельно, тем более, что они достаточно простые. Для выполнения кода вполне себе подойдет бесплатная машинка на AWS.


С преамбулой окончено, лезем под кат...

Читать дальше →

Логарифмируй это: метод логарифмической производной в машинном обучении

Reading time7 min
Views12K

Прием, о котором пойдет речь — метод логарифмической производной — помогает нам делать всякие штуки, используя основное свойство производной от логарифма. Лучше всего этот метод зарекомендовал себя в решении задач стохастической оптимизации, которые мы исследовали ранее. Благодаря его применению, мы нашли новый способ получения стохастических градиентных оценок. Начнем с примера использования приема для определения оценочной функции.

Довольно математично.
Читать дальше →

Метод оптимизации Trust-Region DOGLEG. Пример реализации на Python

Reading time7 min
Views15K


Trust-region метод (TRM) является одним из самых важных численных методов оптимизации в решении проблем нелинейного программирования (nonlinear programming problems). Метод базируется на определении региона вокруг лучшего решения, в котором квадратичная модель аппроксимирует целевую функцию.

Методы линейного поиска (line search) и методы trust-region генерируют шаги с помощью аппроксимации целевой функции квадратичной моделью, но использую они эту модель по-разному. Линейный поиск использует её для получения направления поиска и дальнейшего нахождения оптимального шага вдоль направления. Trust-region метод определяет область (регион) вокруг текущей итерации, в котором модель достаточно аппроксимирует целевую функцию. В целях повышения эффективности направление и длина шага выбираются одновременно.

Trust-region методы надежны и устойчивы, могут быть применены к плохо обусловленным задачам и имеют очень хорошие свойства сходимости. Хорошая сходимость обусловлена тем, что размер области TR (обычно определяется модулем радиус-вектора) на каждой итерации зависит от улучшений сделанных на предыдущих итерациях.
Читать дальше →

Как научить свою нейросеть генерировать стихи

Reading time10 min
Views55K
Умоляю перестань мне сниться
Я люблю тебя моя невеста
Белый иней на твоих ресницах
Поцелуй на теле бессловесном

Когда-то в школе мне казалось, что писать стихи просто: нужно всего лишь расставлять слова в нужном порядке и подбирать подходящую рифму. Следы этих галлюцинаций (или иллюзий, я их не различаю) встретили вас в эпиграфе. Только это стихотворение, конечно, не результат моего тогдашнего творчества, а продукт обученной по такому же принципу нейронной сети.

Вернее, нейронная сеть нужна лишь для первого этапа — расстановки слов в правильном порядке. С рифмовкой справляются правила, применяемые поверх предсказаний нейронной сети. Хотите узнать подробнее, как мы это реализовывали? Тогда добро пожаловать под кат.
Читать дальше →

Яндекс открывает технологию машинного обучения CatBoost

Reading time6 min
Views103K
Сегодня Яндекс выложил в open source собственную библиотеку CatBoost, разработанную с учетом многолетнего опыта компании в области машинного обучения. С ее помощью можно эффективно обучать модели на разнородных данных, в том числе таких, которые трудно представить в виде чисел (например, виды облаков или категории товаров). Исходный код, документация, бенчмарки и необходимые инструменты уже опубликованы на GitHub под лицензией Apache 2.0.



CatBoost – это новый метод машинного обучения, основанный на градиентном бустинге. Он внедряется в Яндексе для решения задач ранжирования, предсказания и построения рекомендаций. Более того, он уже применяется в рамках сотрудничества с Европейской организацией по ядерным исследованиям (CERN) и промышленными клиентами Yandex Data Factory. Так чем же CatBoost отличается от других открытых аналогов? Почему бустинг, а не метод нейронных сетей? Как эта технология связана с уже известным Матрикснетом? И причем здесь котики? Сегодня мы ответим на все эти вопросы.

Чудесный мир Word Embeddings: какие они бывают и зачем нужны?

Reading time19 min
Views146K

Начать стоит от печки, то есть с постановки задачи. Откуда берется сама задача word embedding?
Лирическое отступление: К сожалению, русскоязычное сообщество еще не выработало единого термина для этого понятия, поэтому мы будем использовать англоязычный.
Сам по себе embedding — это сопоставление произвольной сущности (например, узла в графе или кусочка картинки) некоторому вектору.


image

Читать дальше →

Снимаем «4D видео» с помощью depth-сенсора и триангуляции Делоне

Reading time15 min
Views20K


Привет Хабр! Это заметка о небольшом хобби-проекте, которым я занимался в свободное время. Я расскажу, как с помощью несложных алгоритмов превращать карты глубины от depth-сенсоров в забавный вид контента — динамические 3D сцены (их ещё называют 4D video, volumetric capture или free-viewpoint video). Моя любимая часть в этой работе — алгоритм триангуляции Делоне, который позволяет превращать разреженные облака точек в плотную полигональную сетку. Приглашаю всех, кому интересно почитать про алгоритмы, самописные велосипеды на C++11, и, конечно же, посмотреть на трёхмерных котиков.

Для затравки: вот что получается при использовании RealSense R200: skfb.ly/6snzt (подождите несколько секунд для загрузки текстур, а затем используйте мышку, чтобы поворачивать сцену). Под катом есть ещё!
Обладатели лимитированных тарифов, будьте осторожны. В статье много разных изображений и иллюстраций.

Интересный этюд Factorio: симулятор завода

Reading time5 min
Views87K
Эта игра — очередная очень интересная с точки зрения механики бета, представляющая заодно своеобразный язык программирования.



И здесь самое забавное — это кривая обучения и интерфейсы. Давайте пройдёмся по этим моментам, благо есть отличные находки.

Вы играете за инженера, очнувшегося на незнакомой планете около обломков своего космического корабля. Поскольку вы инженер, а не какой-нибудь агроном, вместо космической картохи предстоит развить технологию и собрать ракету с нуля. В общем, старая добрая игра, описанная у Вернора Винджа — «восстанови цивилизацию за минимальный срок».

Первая задача — используя технологии бронзового века, получить прединдустриальные, а затем собрать жестяной радар, чтобы найти основную часть корабля. Затем — добраться туда на каком-то транспортном средстве. Там забрать ядро компьютера и получить доступ ко всем данным по тому, как правильно делать ракеты, бронебойные патроны, скафандры и прочую мелочь, важную для выживания.

Автоэнкодеры в Keras, Часть 2: Manifold learning и скрытые (latent) переменные

Reading time11 min
Views28K

Содержание






Для того, чтобы лучше понимать, как работают автоэнкодеры, а также чтобы в последствии генерировать из кодов что-то новое, стоит разобраться в том, что такое коды и как их можно интерпретировать.
Читать дальше →

Автоэнкодеры в Keras, Часть 1: Введение

Reading time11 min
Views98K

Содержание



Во время погружения в Deep Learning зацепила меня тема автоэнкодеров, особенно с точки зрения генерации новых объектов. Стремясь улучшить качество генерации, читал различные блоги и литературу на тему генеративных подходов. В результате набравшийся опыт решил облечь в небольшую серию статей, в которой постарался кратко и с примерами описать все те проблемные места с которыми сталкивался сам, заодно вводя в синтаксис Keras.

Автоэнкодеры


Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.



Кому интересно, добро пожаловать под кат
Читать дальше →

Материалы студенческой школы «Recent Advances in Algorithms»

Reading time1 min
Views4.3K
Recent Advances in Algorithms

В конце мая в Петербурге в ПОМИ РАН прошла международная студенческая школа «Recent Advances in Algorithms». Идея школы заключалась в том, чтобы ведущие учёные рассказали о последних достижениях в области алгоритмов. В результате у нас получился следующий список курсов.

Список лекторов
Читать дальше →

Фантастика и фентези за два с половиной года, почти сто хороших книг

Reading time22 min
Views250K
На этот пост меня подтолкнула публикация «Почему я ворую книги, бедные авторы, и как это исправить», а именно — скепсис и возражения на мой комментарий о том, что я не читаю плохие книги. Мне предложили рассказать, как я выбираю книги для чтения и что именно читаю. Ну я и повелся.
Оформить список было сравнительно просто, FBReader любезно хранил на GoogleDrive все скачанные книги с того момента, как там появилась эта услуга. Предлагаю вашему вниманию список прочитанного мной за 2,5 года из жанров фентези и фантастики.
Читать дальше →

CRISP-DM: проверенная методология для Data Scientist-ов

Reading time16 min
Views80K
Постановка задач машинного обучения математически очень проста. Любая задача  классификации, регрессии или кластеризации – это по сути обычная оптимизационная задача с ограничениями. Несмотря на это, существующее многообразие алгоритмов и методов их решения делает профессию аналитика данных одной из наиболее творческих IT-профессий. Чтобы решение задачи не превратилось в бесконечный поиск «золотого» решения, а было прогнозируемым процессом, необходимо придерживаться довольно четкой последовательности действий. Эту последовательность действий описывают такие методологии, как CRISP-DM.

Методология анализа данных CRISP-DM упоминается во многих постах на Хабре, но я не смог найти ее подробных русскоязычных описаний и решил своей статьей восполнить этот пробел. В основе моего материала – оригинальное описание и адаптированное описание от IBM. Обзорную лекцию о преимуществах использования CRISP-DM можно посмотреть, например, здесь.


* Crisp (англ.) — хрустящий картофель, чипсы
Читать дальше →

Обучение с подкреплением: от Павлова до игровых автоматов

Reading time9 min
Views13K

История обучения с подкреплением в зависимости от того, как считать насчитывает от полутора веков до 60 лет. Последняя волна (которая захлестывает сейчас нас всех) началась вместе с подъемом всего машинного обучения в середине 90-ых годов 20-ого века. Но люди, которые сейчас на гребне этой волны начинали само собой не сейчас, а во время предыдущего всплеска интереса — в 80-ых. В процессе знакомства с историей нам встретятся многие персонажи, который сыграли роль в становлении учения об искусственном интеллекте (которое мы обсуждали в прошлой статье). Само собой, это неудивительно, ведь обучение с подкреплением — его неотъемлемая часть. Хотя обо всем по порядку.


Само название “обучение с подкреплением” взято из работ известного русского физиолога, нобелевского лауреата Ивана Петровича Павлова. В 1923 вышел его труд “Двадцатилетний опыт объективного изучения высшей нервной деятельности (поведения) животных” [1], известный на западе как Conditional Reflexes [2]. Но психологические подходы были известны и ранее.

Читать дальше →

Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

Reading time9 min
Views32K
До:



После:



Заинтригованы? Но обо всем по порядку.

t-SNE


t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity