Pull to refresh
6
19
Сергей Плохов@DigitalPsychiatry

Машинное обучение, компьютерное зрение, фотограф

Send message

«Гипотеза Римана: В погоне за скоростью. Является ли сходимость к GUE новым инвариантом?»

Level of difficultyHard
Reading time36 min
Reach and readers6.8K

Аннотация

В данной статье представлено полное доказательство и экспериментальная проверка двух глубоко взаимосвязанных гипотез, раскрывающих фундаментальные статистические свойства нулей дзета-функции Римана.На самом деле гипотез - три , но Гипотезу 1 я уже доказывал в прошлой статье . Это исследование не только устанавливает строгие теоретико-числовые результаты, но и предлагает новую спектрально-динамическую интерпретацию распределения нулей, связывающую теорию чисел с квантовым хаосом и теорией возмущений.

Исследование начинается с Гипотезы 2, утверждающей существование строгой иерархии в скорости сходимости эмпирических спектральных статистик к их предельным формам:
α_ζ > α_GUE > α_perturbed.

Данный гипотеза служит основой для обобщающей Мета-гипотезы 3, вводящей концепцию «критической оптимальности». В рамках этой концепции критическая линия Re(s) = 1/2 интерпретируется не просто как локус гипотезы Римана, а как линия спектральной жесткости. Мы доказываем, что она одновременно реализует два экстремальных принципа:

Глобальная минимизация хаоса: На этой линии статистика нулей демонстрирует максимально возможное подавление спектральных флуктуаций, достигая предельной степени универсальности, предсказанной GUE, но с уникально высокой скоростью сходимости. Это указывает на глобально оптимальную «упакованность» и отталкивание нулей.

Локальная максимизация стабильности: Критическая прямая выступает как аттрактор, обеспечивающий максимальную устойчивость статистических свойств нулей по отношению к «малым сдвигам» в комплексной плоскости. Любое отклонение от этой линии (например, рассмотрение мнимых частей нулей для функций из класса Сельберга с Re(s) ≠ 1/2) приводит к качественному и количественному нарушению доказанной иерархии, то есть к ослаблению спектральной жесткости. .

Таким образом, работа устанавливает новый мост между аналитической теорией чисел и математической физикой, показывая, что критическая прямая — это не пассивное множество размещения нулей, а динамически оптимальная линия, на которой достигается баланс, минимизирующий глобальный спектральный беспорядок и максимизирующий локальную структурную устойчивость. Результаты подразумевают, что гипотеза Римана, возможно, является следствием этого более глубокого экстремального принципа, управляющего распределением простых чисел.

Читать далее

От данных к доказательству: может ли статистическая инвариантность стать ключом к Гипотезе Римана?

Level of difficultyHard
Reading time26 min
Reach and readers7.8K

Гипотеза Римана, сформулированная в 1859 году, остается одной из самых значимых нерешенных проблем математики. Её доказательство или опровержение не только замкнет фундаментальный вопрос о распределении простых чисел, но и повлияет на криптографию, теорию информации и наше понимание случайности в математике. Традиционные аналитические методы, при всей их изощренности, пока не позволили приблизиться к решению этой задачи. Но что, если мы ищем ответ не там?

Эта статья предлагает радикально новый подход: рассмотреть Гипотезу Римана не как чисто аналитическую проблему, а как проблему распознавания статистических паттернов. Мы исходим из парадигмы, что нули дзета‑функции, если гипотеза верна, должны обладать уникальным статистическим «отпечатком пальца» — инвариантом, который отличает их от любого другого набора точек со схожими свойствами. Это переход от вопроса «почему?» к вопросу «как отличить?».

Наше исследование начинается там, где закончилась предыдущая работа «Взламывая Вселенную». Если там мы научились видеть геометрию нулей через 3D‑визуализации и обнаружили их связь с Гауссовым унитарным ансамблем, то теперь мы делаем качественный скачок. Мы не просто констатируем сходство, а ищем количественную меру этого сходства, которая достигает экстремума именно при выполнении Гипотезы Римана.

В фокусе исследования — два перспективных кандидата на роль такого статистического инварианта.

Циркулярная гипотеза: Мы применим метод «намотки» нормированных нулей на единичную окружность, известный в теории чисел. Гипотеза заключается в том, что при выполнении Гипотезы Римана распределение этих точек на окружности стремится к идеально равномерному, причем скорость этой сходимости и мера отклонения от равномерности будут экстремальными по сравнению с любым другим возможным расположением нулей. Мы разработаем математический аппарат для измерения «степени равномерности» и проверим его на трех типах данных: реальных нулях, синтетических точках на критической линии и точках со смещением.

Читать далее

Взламывая вселенную паттернов: что гипотеза Римана может рассказать нам об иерархии признаков в компьютерном зрении?

Level of difficultyHard
Reading time39 min
Reach and readers11K

Аннотация

Данное исследование представляет собой концептуальный мост между, казалось бы, удаленными областями: теорией чисел и компьютерным зрением. В его центре — не попытка формального доказательства или инженерной реализации, а методологическая гипотеза. Предлагаю рассмотреть гипотезу Римана не только как математическую проблему, но и как мощную метафору и структурный шаблон для понимания фундаментальных ограничений и принципов в машинном обучении.

Ключевая аналогия строится на идее глубинного порядка, скрытого в кажущемся хаосе. Распределение простых чисел выглядит стохастическим, но гипотеза Римана утверждает, что оно управляется строгим законом — положением нулей дзета-функции на критической линии (Re(s)=1/2). Параллельно, поток визуальных данных (пиксели) представляется хаотическим, однако глубокие нейронные сети (DNN) демонстрируют способность извлекать из него жесткую иерархию абстрактных признаков (края → текстуры → паттерны → части объектов → объекты). Возникает вопрос: является ли эта способность чисто эмпирическим феноменом, или за ней стоит некий неизвестный «закон организации признаков», подобный закону для простых чисел? Существует ли для пространства визуальных концепций своя «критическая линия» — фундаментальное ограничение, диктующее, какие иерархии признаков устойчивы, обобщаемы и эффективно вычислимы?

Работа структурирована вокруг трех центральных тем, исследуемых через призму этой аналогии:

Читать далее

Основы оптического потока в ML: от первых принципов к уравнениям Лукаса-Канаде и Хорна-Шанка

Level of difficultyHard
Reading time37 min
Reach and readers7.5K

Аннотация

Настоящая статья представляет собой развернутое исследование, посвященное систематическому изучению классических алгоритмов оценки оптического потока — фундаментальной задачи компьютерного зрения. Основной целью работы является последовательный и строгий вывод ключевых методов, начиная от базовых физических постулатов и заканчивая завершенными, готовыми к реализации математическими моделями. В центре внимания находится уравнение ограничения оптического потока, выводимое из краеугольного предположения о постоянстве яркости, и два основополагающих, принципиально различных подхода к решению этой недоопределенной задачи: локальный метод Лукаса-Канаде, основанный на предположении о пространственной согласованности потока в малой окрестности, и глобальный метод Хорна-Шанка, вводящий условие плавности (гладкости) потока в виде регуляризирующего функционала. Подробно анализируются теоретические основания каждого подхода, их математический аппарат, включая вывод и решение соответствующих систем уравнений, а также проводится сравнительный анализ их сильных сторон и присущих им фундаментальных ограничений, таких как проблема апертуры и чувствительность к нарушениям исходных предположений.

Практическая значимость и верификация теоретических положений исследования обеспечиваются детальной численной реализацией обоих алгоритмов в среде MATLAB. Экспериментальная часть включает генерацию и обработку синтетических последовательностей с заведомо известным вектором движения для объективной количественной оценки точности, а также тестирование на реальных видеоданных для анализа устойчивости в условиях шумов, изменений освещенности и текстуры. Проведенное сравнение визуализирует ключевые различия в характере получаемых полей потока (разреженное против плотного), оценивает вычислительную эффективность и робастность методов в различных сценариях.

Читать далее

Применение вариационного исчисления к задаче выделения границ: вывод уравнения Эйлера-Лагранжа

Level of difficultyHard
Reading time25 min
Reach and readers9.4K

Представьте, что вам нужно обвести объект на картинке — не просто тыкая в пиксели, а проведя одну идеальную, плавную и уверенную линию. Та самая, которую набросал бы на бумаге художник. Как объяснить компьютеру, что значит «идеальная граница»? Как заставить его искать не среди груды точек, а в бесконечном море возможных кривых?

Оказывается, на этот вопрос уже давно ответила математика, а именно — вариационное исчисление. Это тот самый инструмент, который стоит за знаменитыми алгоритмами вроде «активных контуров» (snakes) или «уровневых множеств». Часто в статьях показывают готовые формулы и код, а саму красивую логику оставляют за кадром.

Давайте вместе разберем эту связь. Начнем с простого: как найти минимум у обычной функции. А потом — шаг за шагом — расширим эту идею до целых кривых. Ключевой момент на пути — уравнение Эйлера-Лагранжа. Мы не просто запишем его, а честно выведем: от замысла «энергии» контура до финального условия, используя лишь базовую лемму вариационного исчисления и интегрирование по частям.

Самое интересное — это уравнение не просто абстракция. Оно описывает баланс, равновесие сил. Оптимальная граница — результат «борьбы»: с одной стороны, она хочет оставаться гладкой и аккуратной, с другой — стремится лечь точно на резкий перепад цвета или яркости на изображении.

Как только вы это поймете, работа с алгоритмами сегментации перестает быть магией. Вы начинаете осмысленно настраивать параметры, предсказывать поведение и даже придумывать собственные критерии для «идеальной границы».

Читать далее

«Квантовая фотография: как аналоговая эмульсия вычисляет волновую функцию»

Level of difficultyMedium
Reading time16 min
Reach and readers6.9K

В настоящей статье предлагается рассмотрение классического процесса аналоговой фотографии не как художественной или технической дисциплины, а как физической реализации квантового измерения и вычисления. Мы устанавливаем структурный изоморфизм между этапами формирования серебряно-желатинового отпечатка и фундаментальными постулатами квантовой механики.

Сценарное освещение трактуется как начальное квантовое состояние, оптико-механическая система камеры — как оператор наблюдения, а фотохимическая эмульсия — как среда, осуществляющая необратимую декогеренцию и усиление. Ключевые квантовые концепции — волновая функция, коммутационные соотношения, матрица плотности, вероятность перехода — получают прямые операциональные аналоги в фотографических параметрах: выдержке, диафрагме, статистике зерна, характеристической кривой и химических константах проявления.

Статья даёт строгое математическое описание этих процессов, вводя и детально разбирая ряд физических формул — от правила Ферми для поглощения фотона до соотношения неопределённостей «время–энергия» для объяснения дробового шума. Цель — предложить инженерам, специалистам по обработке сигналов и материаловедам новую, интуитивно-физическую модель для понимания квантовых принципов через детерминированные технологические процедуры. Мы показываем, что фотографическая система является законченным аналоговым компьютером, материально вычисляющим квадрат модуля волновой функции падающего излучения.

Читать далее

Information

Rating
406-th
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity

Specialization

Бизнес-аналитик
Младший
From 80,000 ₽
Ведение переговоров
Управление проектами
Оптимизация бизнес-процессов
Проектное планирование
Развитие бизнеса
Мониторинг и анализ рынка