Prompt Engineering все еще остается ключевым элементом в разработке приложений на базе LLM. По мере того как индустрия движется от экспериментов к созданию продуктов, возникает потребность в лучших практиках и проверенных паттернах, а чтобы находить их, лучшим методом является постоянный анализ существующих топовых решений.
В мире разработки программного обеспечения происходит фундаментальная революция. Мы стоим на пороге перелома в самом подходе к созданию кода: от традиционного программирования, где код пишется вручную, к новой эпохе, где AI-агенты становятся не просто ассистентами, а полноценными членами команды разработки.
В этой статье мы исследуем эволюцию подходов к AI-разработке - от такого подхода как Vibe Coding к системной методологии AI Software Engineering (AI SWE), которая позволяет превратить AI-агентов в управляемый инструмент для создания больших и сложных систем.
В этой статье мы погрузимся во внутреннее устройство Claude Code - агента для помощи в разработке от Anthropic. Мы проанализируем его с точки зрения архитектуры, рассмотрим доступные инструменты и разберем системные промпты, которые определяют его поведение.
В этой статье мы рассмотрим альтернативный подход вызова инструментов LLM, который использует Structured Output вместо традиционного Function Calling для обеспечения надежности и предсказуемости.
История о том, как я пытаюсь создать голосового AI помощника для моего 5-летнего сына.
Создание AI помощника - идея не новая, особенно с учетом массового распространения ИИ в последний год и появления голосового ассистента от OpenAI и их Realtime API - которое позволяет разработчикам создавать мультимодальные интерфейсы с низкой задержкой преобразования речи в речь.