Pull to refresh
3
0
Зовут Артем, занимаюсь ML в направление @Lightcart

User

Send message

Исследуем эволюцию архитектур в Computer Vision: Mind Map всех ключевых моделей

Level of difficultyEasy
Reading time3 min
Reach and readers1.4K

Компьютерное зрение (Computer Vision) пережило невероятную эволюцию за последние десятилетия. От простых свёрточных сетей до сложных архитектур, которые сегодня задают стандарты в распознавании изображений, обработке видео и других задачах. Но как разобраться во всём этом многообразии? Чтобы помочь себе (и вам!) лучше понять основные направления развития, я создал Mind Map , которая объединяет ключевые архитектуры Computer Vision — от классических моделей до современных прорывов.

Читать далее

Atlas: Как реконструировать 3D сцену из набора изображений

Level of difficultyMedium
Reading time8 min
Reach and readers1.9K

Всем привет! Если вы увлекаетесь 3D-технологиями или просто хотите узнать больше о современных методах создания трехмерных моделей, вам точно стоит прочитать эту статью. Мы погрузимся в метод Atlas — уникальный способ 3D-реконструкции сцены на основе всего лишь 2D-изображений. Вы узнаете, как линейная регрессия и усеченная знаковая функция расстояния (TSDF) могут значительно упростить процесс моделирования, обеспечивая более точные результаты без необходимости использования карт глубины.

Мы рассмотрим ключевые концепции, такие как извлечение признаков с помощью 2D-CNN и превращение их в воксельные объёмы, а также узнаем, как 3D-CNN уточняет эти признаки для более глубокого понимания сцены. Даже если вы не знакомы с терминологией, я постараюсь объяснить всё доступным языком.

Читать далее

Под капотом GCN

Level of difficultyMedium
Reading time5 min
Reach and readers1.3K

Здравствуйте! Сегодня мы погружаемся в тему графовых сверточных сетей (GCN) и ключевых принципов, стоящих за ними. Если вам интересно узнать больше, я настоятельно рекомендую перейти на статью на Habr, где вы найдёте подробный анализ и актуальные примеры применения GCN.

Введение

GCN (Graph Convolutional Networks) — это масштабируемый подход к полуконтролируемому обучению, который применяется к данным, представленным в виде графов. Если вы хотите глубже понять, как сверточные нейронные сети (CNN) адаптируются для работы с графовыми структурами, загляните в статью на Habr.

Выбор архитектуры GCN основан на принципе локализованного приближения первого порядка спектральных сверток для графов. Что это значит? Мы рассматриваем только ближайших соседей узла, а спектральная свертка позволяет извлекать информацию с помощью спектра графа. В подробностях вы сможете разобраться, прочитав статью.

Метод

Рассмотрим задачу классификации узлов в графе, где метки доступны лишь для небольшого числа узлов. Графо-ориентированное полу-контрольное обучение предлагает интересные решения для такой задачи. Чтобы лучше понять использование графовой регуляризации и как она работает в функции потерь, обращайтесь к статье.

Не упустите шанс углубиться в эту увлекательную тему и раскрыть все нюансы GCN!

Читать далее

Как работает Mesh R-CNN

Level of difficultyEasy
Reading time7 min
Reach and readers1K

Ну для начала всем привет, в этой статье постараюсь рассказать вам про структуру Mesh R-CNN как он работает, что вообще из себя представляет, также будут сделаны сноски с описанием концепции по генерации 3D объектов. Буду опираться как и уже на существующие статьи, так буду и от себя писать. Возможно будут где то ошибки, потому если заметите, постараюсь исправить.

Вообще для чего нужен Mesh R-CNN, нужен он для того чтобы генерировать 3D объекты на основе изображения. Этот метод построен на фундаменте Mask R-CNN, но с добавлением ветви для предсказания сеток. Это создает начальное представление, которое преобразуется в сетку и уточняется с помощью графовой сверточной сети.

Читать далее

Information

Rating
Does not participate
Registered
Activity

Specialization

ML разработчик, Инженер по компьютерному зрению