Kubernetes в production: сервисы
Полгода назад мы закончили миграцию всех наших stateless сервисов в kubernetes. На первый взгляд задача достаточно простая: нужно развернуть кластер, написать спецификации приложений и вперед. Из-за одержимости в вопросе обеспечения стабильности в работе нашего сервиса пришлось сразу начать разбираться с тем, как работает k8s и тестировать различные сценарии отказов. Больше всего вопросов у меня возникало ко всему, что касается сети. Один из таких "скользких" моментов — работа сервисов (Services) в kubernetes.
В документации нам говорят:
- выкатите приложение
- задайте liveness/readiness пробы
- создайте сервис
- дальше все будет работать: балансировка нагрузки, обработка отказов итд.
Но на практике все несколько сложнее. Давайте посмотрим, как оно работает на самом деле.

Чтобы сделать мониторинг полезным, нам приходится прорабатывать разные сценарии вероятных проблем и проектировать дашборды и триггеры таким образом, чтобы по ним сразу была понятна причина инцидента. 
Не так давно в датацентре, в котором мы арендуем серверы случился очередной мини-инцидент. Никаких серьезных последствий для нашего сервиса в итоге не было, по имеющимся метрикам нам удалось понять что происходит буквально за минуту. А потом я представил, как пришлось бы ломать голову, если бы не хватало всего 2х простеньких метрики. Под катом коротенькая история в картинках.
Еще 4 года назад использование контейнеров в production было экзотикой, но сейчас это уже норма как для маленьких компаний, так и для больших корпораций. Давайте попробуем посмотреть на всю эту историю с devops/контейнерами/микросервисами ретроспективно, взглянуть еще раз свежим взглядом на то, какие задачи мы изначально пытались решить, какие решения у нас есть сейчас и чего не хватает для полного счастья?
С появлением docker у нас, как у сервиса мониторинга немного усложнилась жизнь. Как я 
Я уже рассказывал про
Сейчас существует достаточно много систем для хранения и обработки метрик (timeseries db), но ситуация с агентами (софтом, который собирает метрики) сложнее. Не так давно появился
В 2008 году в списке рассылки pgsql-hackers началось
Основным хранилищем метрик у нас является cassandra, мы используем её уже более трех лет. Для всех предыдущих проблем мы успешно находили решение, используя встроенные средства диагностики кассандры.
Часто мониторинг сетевой подсистемы операционной системы заканчивается на счетчиках пакетов, октетов и ошибок сетевых интерфейсах. Но это только 2й уровень модели 
