All streams
Search
Write a publication
Pull to refresh
12
0
Александр Шатилов @alexbraun

Tech Lead using Angular & .net

Send message

Fine-tune Qwen3 Embeddings для классификации категорий товаров

Level of difficultyMedium
Reading time4 min
Views4K

Мы взяли размеченный корпус товаров из Web Data Commons, дообучили Qwen3 Embedding с помощью LoRA и получили лёгкий чекпойнт на ~615M параметров, который сопоставляет «сырые» названия товаров с 6 верхнеуровневыми категориями с результатом macro-F1 = 0.836, может работать в реальном времени на одной видеокарте. Код доступен в гитхабе так же английская версия этого поста.

Читать далее

Semantic RAG – как научить AI-ассистентов понимать, а не угадывать

Level of difficultyMedium
Reading time14 min
Views7.3K

Одна из самых распространённых задач для AI-ассистента — поиск ответов на вопросы. Пользователи ожидают, что он сможет находить информацию во внутренних wiki, базах знаний техподдержки, Word-документах, Excel-файлах и других корпоративных источниках.

Сегодня такой поиск чаще всего реализуется с помощью подхода Retrieval-Augmented Generation (RAG). Суть проста: сначала ассистент находит фрагменты документов, которые кажутся релевантными запросу, и уже на их основе формирует связанный ответ.

На первый взгляд схема выглядит логичной. Но на практике у классического RAG есть целый ряд ограничений, которые быстро дают о себе знать при реальных внедрениях. В этой статье мы разберём основные проблемы и покажем, как можно их обойти.

Читать далее

Новый подход для классификации текста в чат-ботах

Level of difficultyEasy
Reading time8 min
Views3.9K

Всё чаще в реализации проектов встречается потребность в классификации входящего текста для дальнейшей обработки. До недавнего бума нейросетей задачи по классификации текста были достаточно трудоемкими, дорогостоящими и требовали глубоких знаний NLP. А готовые решения не давали желаемой точности ответов. К счастью, сейчас практически моментально можно внедрить множество решений. Представьте, автодилер ежедневно получает сотни сообщений от клиентов. Как быстро и точно определить, что хочет клиент? С помощью классификации текста.

Читать далее

Нечеткое сравнение строк с помощью rapidfuzz

Reading time9 min
Views11K

Привет, Хабр!

Меня зовут Антон Черниговский, я участник профессионального сообщества NTA.

В публикации расскажу, как при решении задачи нечеткого сравнения строк, среди разных инструментов сравнения (по косинусному сходству, по сходству Левенштейна, по сходству Джаро‑Винклера) был выбран лучший вариант нечеткого сопоставления. Сравнение инструментов производилось исходя из скорости выполнения, правильности сравнения и простоты реализации, с помощью библиотек rapidfuzz и sklearn.

Узнать какой инструмент лучше

POLLUX: оценка генеративных способностей моделей для русского языка

Level of difficultyMedium
Reading time21 min
Views3.4K

Обычно мы оцениваем способности больших языковых моделей через бенчмарки вроде MMLU, RussianSuperGlue или первых версий MERA, которые напоминают экзаменационные тесты с выбором правильного варианта ответа. Однако на практике пользователи задействуют модели для принципиально иных целей — создания текстов, генерации идей, переводов, составления резюме и прочих задач. Как оценивать результат в этом случае? В этой статье мы расскажем, как решали проблему оценки открытой генерации и что у нас получилось.

Читать далее

Обучение модели естественного языка с BERT и Tensorflow

Reading time9 min
Views37K

Рис. 1. Фразы и предложения в векторном представлении модели естественного языка

Обработка естественного языка (Natural Language Processing, NLP) – это область вычислительной лингвистики, ориентированная на разработку машин, способных понимать человеческие языки. Разработка таких машин – одна из задач, которые решают исследователи и инженеры в команде SberDevices.

В современной компьютерной лингвистике понимание смысла написанного или сказанного достигается с помощью векторных моделей естественного языка. Например, в семействе виртуальных ассистентов Салют такая модель применяется для распознавания намерений пользователя, ведения диалога, выделения именованных сущностей и многих других задач.

В этой статье мы рассмотрим метод обучения модели естественного языка (NLU) на размеченных данных и реализацию этого метода на python3 и tensorflow 1.15. Ниже вы найдете пошаговое руководство и примеры кода. Код всего эксперимента доступен для воспроизведения на Colab.

Помимо этого, мы выкладываем в публичный доступ русскую модель NLU класса BERT-large [427 млн. параметров]: tensorflow, pytorch.

Прочитав этот пост, вы узнаете:

  • что такое модели NLU и как они применяются в компьютерной лингвистике;
  • что такое векторы предложений и как их получить;
  • как обучить векторизатор предложений [NLU] на базе архитектуры BERT;
  • как можно использовать обученные модели NLU

Встречаем YandexGPT 5 — в Алисе, облаке и опенсорсе

Reading time17 min
Views69K

Привет, меня зовут Андрей Бут, я представляю команду разработки YandexGPT. Сегодня мы анонсируем новое поколение наших больших языковых моделей — YandexGPT 5.

Старшая модель — YandexGPT 5 Pro — уже применяется в чате с Алисой, а также доступна в Yandex Cloud через API. Кроме того, в чате с Алисой впервые можно переключиться на базовую версию модели, которая не использует внешнюю информацию из Поиска и не дообучалась «быть» виртуальным ассистентом.

Pretrain-версия младшей модели — YandexGPT 5 Lite Pretrain — опубликована в свободном доступе и будет полезна разработчикам, которые дообучают базовые версии моделей под свои задачи. Дообученная нами на её основе instruct-версия в ближайшее время станет доступна через API. 

Под катом — более подробно о том, как мы обучали наши модели и какой опыт накопили.

Читать далее

Человек и LLM: как построить метрики для оценки моделей

Reading time14 min
Views23K

Привет, меня зовут Ирина Барская, и я руководитель службы аналитики и исследований в Яндексе. А это значит, что я и моя команда каждый день думаем, как оценивать качество работы генеративных моделей, какие при этом смотреть метрики, как вообще понять, хорошая ли модель у нас получилась.

Когда возникает вопрос о том, как измерить «ум» модели, первое, что приходит в голову, — протестировать её так же, как человека: с помощью школьных российских или американских тестов или специализированных профессиональных экзаменов. Так в мире LLM появилось немало бенчмарков: берём вопросы из определённой области с вариантами ответа, модель проходит тест, получаем быстрый автоматический вердикт и таким образом понимаем, насколько умная перед нами модель.

В этой статье предлагаю найти ответ на вопрос: есть ли универсальный метод оценки работы LLM‑моделей? Для этого я расскажу, какие для этого существуют бенчмарки и почему нельзя полагаться только на них, как работает Chatbot Arena LLM Leaderboard, кто такие AI‑тренеры и может ли одна модель правильно оценить другую.

Читать далее

Как мы готовим RL для Alignment в больших языковых моделях: опыт команды YandexGPT

Reading time28 min
Views19K

Сегодня через API стала доступна новая модель YandexGPT 3 Lite. Одним из ключевых этапов её обучения, как и в случае с другими недавними моделями, стал этап выравнивания (Alignment), включающий в том числе стадию обучения с подкреплением (RL). Пожалуй, без этого этапа мы бы не смогли добиться такого роста в качестве, который был необходим для запуска новых возможностей и сервисов (например, Нейро). Поэтому эту статью мы полностью посвятим особенностям выравнивания моделей. 

На тему Alignment и RL было написано уже немало статей. Кажется, любой ML-инженер уже, так или иначе, сталкивался или читал о них. Поэтому мы хоть и напомним базовую информацию, но всё же сфокусируемся на тех деталях реализации, которые не на слуху. 

Читать далее

Как и зачем мы замеряли знания культурного кода у YandexGPT

Reading time7 min
Views5.4K

Привет! Сегодня предлагаю поговорить о том, как мы проверяем, понимает ли YandexGPT специфичные для нашей культуры явления: отсылки к фильмам и песням, цитаты, традиции, анекдоты, мемы. Для нас это очень важная задача, ведь YandexGPT используют такие большие продукты, как Поиск и Алиса, с которыми ежедневно взаимодействуют миллионы людей — она обязана понимать культурные отсылки самого разного уровня.

В статье про бенчмарки для LLM уже упоминался бенчмарк культурного кода. В него мы вложили много сил и души, и думаю пришло время рассказать о нём подробнее — как же мы придумали замерять культурный код, из чего собрали бенчмарк, как тестировали YandexGPT и каким мемам её учили.

Читать далее

Яндекс разработал и выложил в опенсорс YaFSDP — инструмент для ускорения обучения LLM и сокращения расходов на GPU

Reading time12 min
Views26K

Сегодня мы выкладываем в опенсорс наш новый инструмент — алгоритм YaFSDP, который помогает существенно ускорить процесс обучения больших языковых моделей.

В этой статье мы расскажем о том, как можно организовать обучение больших языковых моделей на кластере и какие проблемы при этом возникают. Рассмотрим альтернативные методы ZeRo и FSDP, которые помогают организовать этот процесс. И объясним, чем YaFSDP отличается от них.

Читать далее

Как мы учим Яндекс отвечать на вопросы и экономим пользователям 20 тысяч часов в сутки

Reading time6 min
Views9.1K


Когда мы вводим запрос в поисковую строку, то ищем информацию, а не ссылки. Более того, зачастую нам требуется короткое предложение или общеизвестный факт. К примеру, [формула объёма усечённой пирамиды] на всех сайтах одинакова — ссылки не нужны, достаточно сразу дать ответ.

Быстрыми (фактовыми) ответами сейчас никого не удивить, но мало кто знает, как именно они формируются, чем различаются и что важного произошло в этой области за последнее время. Меня зовут Антон Иванов. Сегодня вместе с моим коллегой Михаилом Агеевым dminer мы расскажем историю ответов в поиске и поделимся некоторыми подробностями, о которых раньше нигде не говорили. Надеюсь, будет полезно.

Читать дальше →

MLOps в облаке: как организовать работу над ML-экспериментами с помощью MLflow

Level of difficultyHard
Reading time10 min
Views5.3K


В свое время DevOps заметно изменил подход к разработке программного обеспечения. Последние пару лет благодаря практикам MLOps меняются принципы и подходы к работе дата-специалистов. Александр Волынский (Technical Product Manager ML Platform VK Cloud) и Сергей Артюхин (преподаватель программы «Симулятор ML» в Karpov Courses) рассказывают, почему MLOps — «новый черный» и как безболезненно реализовать этот подход в своем проекте.
Читать дальше →

Локальный DeepSeek-R1: Когда скорость улитки – не приговор, а точка старта

Reading time18 min
Views32K

Локальный DeepSeek-R1-0528 на скромном железе? Реально. Со скоростью улитки? Первоначально – да. Но итог моего эксперимента: эту 'улитку' можно заставить работать вдвое быстрее.

Читать далее

Собираем компьютер для работы с большими языковыми моделями

Reading time9 min
Views27K

Привет, Хабр! Меня зовут Артем Чебыкин, я ML-инженер и автор медиа вАЙТИ. В этой статье я расскажу о том, какой тип компьютера: стационарный, ноутбук или макбук — больше всего подходит для машинного обучения и почему. Также рассмотрим начальный и продвинутый вариант сборки для машинного обучения больших языковых моделей (LLM).

Читать далее

Разбираем использование open-source Wunjo AI в ваших проектах с искусственным интеллектом и просто нейронные сети

Level of difficultyMedium
Reading time8 min
Views6.2K

Привет, дорогой Хабр! Давно не общались. Сегодня мы рассмотрим проект с открытым исходным кодом, позволяющий создавать дипфейки, клонировать речь, генерировать видео, удалять текст и объекты, а также получать изображения без фона, прямо на вашем компьютере. Поговорим о Wunjo AI и его возможностях для тех, кто еще не в курсе. В начале статьи ссылки на открытый код GitHub и установочные файлы, чтобы воспользоваться готовыми сборками. А в конце статьи я добавлю видео, в котором расскажу, какие нейронные сети применяются для работы с видео или со звуком, и как эти нейронные сети устроены и работают, либо можно спросить бота в блоге и получить ответ текстом.

Почитать

Новый формат собеседований в Яндекс

Level of difficultyEasy
Reading time6 min
Views83K

Недавно Яндекс изменил процесс отбора кандидатов, теперь перед алгоритмической секцией добавилась секция Advanced Code. Секция заявлена как более близкая к практике, в статье я расскажу правила нового формата.

Читать далее

Гуглить баги — это нормально. Как AI Debugger освоил этот навык и сам исправляет ошибки

Level of difficultyMedium
Reading time23 min
Views4.4K

Автоматический дебаг с помощью языковых моделей уже не новость, и разработчики используют LLM‑модели и среды разработки с интегрированным ИИ, чтобы анализировать код и предлагать исправления. Но что если встроить в этот процесс ещё один мощный инструмент — поиск в интернете?

В этой статье мы рассмотрим необычный подход: автоматический дебаггер, который не просто анализирует код с помощью нейросети, но и при необходимости отправляет сформулированные моделью поисковые запросы в интернете. Если модель не уверена в исправлении, она делает то же, что и человек, — ищет похожие ошибки и готовые решения в сети.

Читать далее

Как общаться с базой знаний на естественном языке с помощью LLM и объективно оценить работу полученной системы

Level of difficultyEasy
Reading time11 min
Views8.6K

Привет, Хабр! Меня зовут Даниил, работаю в ML-отделе Doubletapp. В статье расскажу про особенности применения больших языковых моделей для оптимизации бизнес-процессов.

Большая языковая модель (LLM) — это тип языковой модели, который способен распознавать и генерировать осмысленные тексты, а также другие сложные типы данных (например, код). Такого рода модели обучаются на огромных массивах данных, чаще всего собранных из открытых источников.

Тем не менее LLM все еще имеют ряд проблем, одной из которых является галлюцинирование (придумывание фактов). Сложно винить модель за то, что она не знает, как устроен тот или иной процесс/продукт в вашей компании, и пытается придумать вразумительный ответ. Поэтому нужно подсказать LLM фактическую информацию, а она уже даст нам понятную человеку персонализированную реплику.

Такая система ответов на вопросы с использованием фактической информации называется RAG (Retrieval Augmented Generation).

Данная статья состоит из двух частей:

мы рассмотрим построение RAG-системы на основе библиотеки langchain;

объективно оценим работоспособность созданной системы, используя синтетические данные на русском языке с помощью фреймворка RAGAs.

Читать далее
1
23 ...

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity