Если Вы спрашиваете об определении производных дробного порядка, то выдать вот так сразу не могу. Не потому, что я жадный, а потому что подзабыл. Помню, что можно было вычислить сразу производную третьего порядка, например. Правда, от простой функции — степенной. В общих чертах, примерно, так: предел, дробь, в числителе — конечный полином с биномиальными коэффициентами. Для дробных порядков нужно воспользоваться бесконечным рядом, который получается из формулы бинома Ньютона с дробным показателем. Вместо биномиальных коэффициентов я использовал дроби из Гамма-функций.
Если кому то будет интересно, то за недели две смогу восстановить формульно и с примерами.
Автору респект и уважуха. Лет двадцать назад тоже до данного решения (алгебраического) додумался. Но претендовать на премию Филдса не стал. Премия Филдса — аналог Нобелевской премии, только для математиков. Правда, возлагал надежды на другую свою разработку: формулу-определение для производных дробного порядка. Когда рассказывал про эти производные, то почти все однокурсники по университету смеялись: это как же получается — дробная производная от константы не равна нулю?
Однажды, один преподователь института посоветовал порыться в математической энциклопедии. И, горе мне! Нашёл в ней некоего немца (фамилию забыл), который это придумал раньше меня лет на 300! Правда, формула-определение у него была другая — мне совершенно не понятная: через интеграл с кружочком. Вот такие дела.
Если кому то будет интересно, то за недели две смогу восстановить формульно и с примерами.
Однажды, один преподователь института посоветовал порыться в математической энциклопедии. И, горе мне! Нашёл в ней некоего немца (фамилию забыл), который это придумал раньше меня лет на 300! Правда, формула-определение у него была другая — мне совершенно не понятная: через интеграл с кружочком. Вот такие дела.