В Древнем Египте математики не пользовались доказательствами. Все их утверждения были лишь эмпирически обоснованы. Но тем не менее, пирамиды стояли, а самолеты летали. И, наверное, никто бы и не требовал строгих доказательств, если бы не желание что-то опровергнуть. Вместе с греками математика обрела новую жизнь, в которой появились такие задачи, как квадратура круга, иррациональность корня из двух и задача о трисекции угла. С этого момента потребовались аксиомы, законы логики и теоремы. Современную же математику интересует еще и то, что возможно доказать, а что — нет. Продвижением стали теоремы Геделя о неполноте, формализация логики и Теория доказательств. Я предлагаю теорию и одну аксиому, которая поможет ответить на часть оставшихся вопросов и обозначить границы нашего сознания. В частности, это вопросы полноты, проблема равенства и аксиоматизация нашего воображения.

