Pull to refresh
0
0
Игорь Филатов@iphilatov

User

Send message

Невидимые герои. Почему профессия промпт-инженера действительно важна для ML-сферы

Level of difficultyEasy
Reading time6 min
Reach and readers741

Всем привет. Я Игорь Филатов, ML-разработчик в компании MTS AI, до этого я около полугода работал промпт-инженером. Сегодня я расскажу вам о том, из чего состоит работа промпт-инженера, можно ли назвать ее тяжелым трудом, и как попасть в эту сферу. И заодно признаюсь, почему я все же решил сменить эту профессию.

В чем суть промпт-инжиниринга?

Обычно промпт-инжиниринг понимают в широком смысле – это процесс написания промптов для решения той или иной задачи. Правда, здесь подразумеваются не только бытовые запросы, когда пользователь хочет получить что-то конкретное – например, рецепт лазаньи или текст для публикации в соцсетях. промпт-инженер также решает более стратегические задачи – например, как с помощью более оптимального использования нейросетей тратить меньше времени и ресурсов на выполнение тех или иных бизнес-задач, получая стабильный и качественный результат.

В узком смысле промпт-инжиниринг — это про оптимизацию запросов к языковым моделям. Этот процесс не похож на бытовое написание промптов, он ближе к научно-исследовательским подходам. Чтобы добиться нужного результата. специалисты применяют специальные техники – например, Chain of Thought, когда при решении задачи модель последовательно объясняет полную цепочку своих размышлений, тем самым повышая качество ответа и интерпретируемость данных.

У промпт-инжиниринга и генеративных нейросетей в целом есть одно ключевое преимущество – работать с ними быстро и просто. Это позволяет условному продакт-менеджеру или маркетологу протестировать гипотезу или составить Proof-of-Concept, для этого не нужно быть  классным ML-специалистом и тратить много часов на получение первичного результата.

Читать далее

Information

Rating
Does not participate
Registered
Activity

Specialization

ML разработчик, Промпт-инженер
Младший
Python
Английский язык
Linux
Docker
PyTorch
Машинное обучение
NumPy
Нейронные сети
Обработка естественного языка
Deep Learning