Search
Write a publication
Pull to refresh
0
0
Игорь Филатов @iphilatov

User

Send message

Невидимые герои. Почему профессия промпт-инженера действительно важна для ML-сферы

Level of difficultyEasy
Reading time6 min
Views1.1K

Всем привет. Я Игорь Филатов, ML-разработчик в компании MTS AI, до этого я около полугода работал промпт-инженером. Сегодня я расскажу вам о том, из чего состоит работа промпт-инженера, можно ли назвать ее тяжелым трудом, и как попасть в эту сферу. И заодно признаюсь, почему я все же решил сменить эту профессию.

В чем суть промпт-инжиниринга?

Обычно промпт-инжиниринг понимают в широком смысле – это процесс написания промптов для решения той или иной задачи. Правда, здесь подразумеваются не только бытовые запросы, когда пользователь хочет получить что-то конкретное – например, рецепт лазаньи или текст для публикации в соцсетях. промпт-инженер также решает более стратегические задачи – например, как с помощью более оптимального использования нейросетей тратить меньше времени и ресурсов на выполнение тех или иных бизнес-задач, получая стабильный и качественный результат.

В узком смысле промпт-инжиниринг — это про оптимизацию запросов к языковым моделям. Этот процесс не похож на бытовое написание промптов, он ближе к научно-исследовательским подходам. Чтобы добиться нужного результата. специалисты применяют специальные техники – например, Chain of Thought, когда при решении задачи модель последовательно объясняет полную цепочку своих размышлений, тем самым повышая качество ответа и интерпретируемость данных.

У промпт-инжиниринга и генеративных нейросетей в целом есть одно ключевое преимущество – работать с ними быстро и просто. Это позволяет условному продакт-менеджеру или маркетологу протестировать гипотезу или составить Proof-of-Concept, для этого не нужно быть  классным ML-специалистом и тратить много часов на получение первичного результата.

Читать далее

Information

Rating
Does not participate
Registered
Activity

Specialization

ML Engineer, Prompt Engineer
Junior
Python
English
Linux
Docker
Pytorch
Machine learning
NumPy
Neural networks
Natural language processing
Deep Learning