Как выбрать GPU для машинного обучения

Машинное обучение позволяет компьютерам извлекать данные, находить закономерности и принимать решения на их основе в различных отраслях. Например, в медицине его используют для анализа рентгеновских снимков и МРТ. Автономные транспортные средства с их помощью строят маршруты, а в финансисты прогнозируют рыночные тенденции.
Центральные процессоры не подходят для таких сложных задач из-за отсутствия возможности параллельной обработки данных, длительного времени обучения и ограниченной пропускной способности. Поэтому организации все чаще приобретают графические процессоры или арендуют облачные сервисы с GPU.
В этом материале мы рассказали, на какие параметры графических ускорителей стоит обращать внимание, если планируете работать с машинным обучением.