Search
Write a publication
Pull to refresh
6
0
Кирилл Сидоров @ksidorov

ML NLP Engineer

Send message

1) Про огурцы актуально было для статистических методов, мы же используем в итоге семантическую нейросетевую архитектуру, она практически не подвержена таким проблемам.

2)

Мы решили нормализовать значение поля order в диапазон [0, 1] и поставили задачу регрессии: предсказать это значение для каждой пары «заявка — резюме». Чем больше значение, тем выше кандидат в итоговом списке.»

Кто-то пишет свои паспортные данные и полный адрес, включая номер квартиры. Мы встречали и такое.

Получилось так, что наша моделька в среднем отработала чуть хуже, чем HR-специалист в своей категории: модель — 78 %, профильный HR из отрасли — 84 %. Но модель показала себя лучше, чем средний кадровик на чужой территории, где точность не превышает 70 %. Другими словами, модель не превосходит узкого специалиста на его поле, но стабильно держит хороший уровень по всем направлениям и помогает там, где у человека нет глубокой экспертизы. Это подтверждает её ценность.

Модель сравнивали с реальными HR-специалистами: по точности ранжирования модель немного уступает профильному HR (78% против 84%), но стабильно лучше справляется, чем HR вне своей специализации (около 70%). 

Модель действительно может отдавать предпочтение "гладким" резюме, особенно если они написаны с учётом ключевых слов и современных шаблонов, в том числе с помощью LLM.


Можно дополнительно использовать LLM для выявления "слишком шаблонных" резюме (например, если текст совпадает с популярными шаблонами или сгенерирован LLM). Но это TODO задача, на данный момент не так много кандидатов пользуются этим инструментом

Разные профессии требуют учёта различных критериев и информации при подборе персонала. Нужно разделять резюме кандидатов на кластеры по профобластям и строить алгоритмы, которые учитывают специфику каждой сферы. Это позволяет учитывать реально важное инфо и отбраковывать инфомусор.

Знание английского языка или водительские права вполне могут  быть критичны для каких-то вакансий. Для других — "ну пригодится". А для третьих — это излишки. Гибкие и адаптированные алгоритмы помогают повысить точность отбора и сделать процесс подбора более эффективным и, скажем так, "справедливым".

Согласен, что опора только на резюме — неэффективна, и в лучшем случае это лишь первый фильтр для HR, позволяющий быстро обработать большой поток откликов.

Лучшие практики подбора персонала сегодня включают несколько этапов: короткое телефонное интервью, техническое тестирование, а затем уже встречу с руководителем. Такой подход помогает снизить "шум" и быстрее находить подходящих кандидатов, не теряя сильных специалистов из-за формальностей. Современные компании всё чаще внедряют именно такие многоступенчатые процессы, чтобы повысить эффективность отбора и не упустить ценных кандидатов.

Information

Rating
575-th
Location
Москва, Москва и Московская обл., Россия
Works in
Date of birth
Registered
Activity

Specialization

Data Scientist, ML Engineer
Lead
Git
SQL
Python
Pytorch
Keras
Data Analysis
Big data
Algorithms and data structures
Pandas