• Применение компьютерного зрения в морских исследованиях или 12 человек на сундук мертвеца


      Горячо приветствую, уважаемые коллеги.
      В сообществе OpenDataScience успешно развивается инициатива ML4SG — Machine Learning for Social Good. В её рамках стартовал целый ряд интересных проектов, которые в самых разных областях улучшают нашу с вами жизнь.


      Мы хотели бы рассказать об одном из таких проектов под кодовым названием #proj_shipwrecks. Проект стартовал силами членов сообщества ODS, согласившимися в свое время поработать забесплатно над тем, что им нравится, но до чего по тем или иным причинам руки еще не дошли. Сейчас проект вырос в небольшой non-profit стартап, с целым рядом разных направлений исследований и разработки.


      В рамках проекта мы стремимся помогать людям, занимающимся разного рода морскими исследованиями, от морских археологов, биологов и океанологов до команд спасения на воде, используя как свою экспертизу в области компьютерного зрения, так и придумывая новые, порой неожиданные ходы.

      Читать дальше →
      • +43
      • 9.4k
      • 6
    • Интеллектуальные системы поддержки принятия решений — краткий обзор

        image

        Дисклеймер


        Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

        Введение


        Существет несколько определений ИСППР, которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР — это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.

        Зачем нужны СППР:

        1. Сложность в принятии решений
        2. Необходимость в точной оценке различных альтернатив
        3. Необходимость предсказательного функционала
        4. Необходимость мультипотокового входа (для принятия решения нужны выводы на основе данных, экспертные оценки, известные ограничения и т.п.)
        Читать дальше →
        • +30
        • 56.5k
        • 6
      • Ассоциативные правила, или пиво с подгузниками



          Введение в теорию


          Обучение на ассоциативных правилах (далее Associations rules learning — ARL) представляет из себя, с одной стороны, простой, с другой — довольно часто применимый в реальной жизни метод поиска взаимосвязей (ассоциаций) в датасетах, или, если точнее, айтемсетах (itemsests). Впервые подробно об этом заговорил Piatesky-Shapiro G [1] в работе “Discovery, Analysis, and Presentation of Strong Rules.” (1991) Более подробно тему развивали Agrawal R, Imielinski T, Swami A в работах “Mining Association Rules between Sets of Items in Large Databases” (1993) [2] и “Fast Algorithms for Mining Association Rules.” (1994) [3].
          Читать дальше →