Единая нейросетевая модель кредитного скоринга

Сейчас в Альфа-Банке при построении моделей используется множество различных источников данных. Мы в Лаборатории машинного обучения уже несколько лет применяем нейронные сети на последовательностях для решения задачи кредитного скоринга и построили модели на данных карточных транзакций, транзакций расчетного счета и кредитных историй. Повышение качества в задаче кредитного скоринга позволяет банку выдавать большее количество кредитов при неизменном уровне риска, что напрямую влияет на его прибыль.
Моделей становится больше. Возникает вопрос: почему бы нам не смешивать модели не на уровне их предсказаний, а на некотором более низком уровне? Эта идея приводит нас к новому способу смешивания - построению единой нейросетевой модели, работающей со всеми источниками последовательных данных и учитывающей их взаимное влияние друг на друга. В этой статье мы расскажем, как нам удалось разработать такую модель и каких результатов она позволяет добиться в задаче кредитного скоринга.