Search
Write a publication
Pull to refresh
0
Николай @nickus2010read⁠-⁠only

Пользователь

Send message

Как правильно мерять производительность диска

Reading time14 min
Views354K
abstract: разница между текущей производительностью и производительностью теоретической; latency и IOPS, понятие независимости дисковой нагрузки; подготовка тестирования; типовые параметры тестирования; практическое copypaste howto.

Предупреждение: много букв, долго читать.

Лирика



Очень частой проблемой, является попытка понять «насколько быстрый сервер?» Среди всех тестов наиболее жалко выглядят попытки оценить производительность дисковой подсистемы. Вот ужасы, которые я видел в своей жизни:
  • научная публикация, в которой скорость кластерной FS оценивали с помощью dd (и включенным файловым кешем, то есть без опции direct)
  • использование bonnie++
  • использование iozone
  • использование пачки cp с измерениема времени выполнения
  • использование iometer с dynamo на 64-битных системах


Это всё совершенно ошибочные методы. Дальше я разберу более тонкие ошибки измерения, но в отношении этих тестов могу сказать только одно — выкиньте и не используйте.

Как мерять правильно

Алгоритм роя частиц

Reading time8 min
Views65K

Введение


Стая птиц представляет собой прекрасный пример коллективного поведения животных. Летая большими группами, они почти никогда не сталкиваются в воздухе. Стая двигается плавно и скоординировано, словно ей кто-то управляет. А любой, кто вешал в своем дворе кормушку, знает, что спустя несколько часов его найдут все птицы в округе.


Читать дальше →

MongoDB от теории к практике. Руководство по установке кластера mongoDB

Reading time9 min
Views90K
     Доброго времени суток, уважаемые читатели. В этом посте я хотел бы описать несколько примеров развертки mongoDB, отличия между ними, принципы их работы. Однако больше всего хотелось бы поделиться с вами практическом опытом шардирования mongoDB. Если бы этот пост имел план, он бы выглядел скорее всего так:

  1. Вступление. Кратко о масштабировании
  2. Некоторые примеры развертки mongoDB и их описание
  3. Шардинг mongoDB

    Пункты 1 и 2 — теоретические, а номер 3 претендует на практическое руководство по поднятию кластера mongoDB и больше всего подойдет тем, кто столкнулся с этим в первый раз.
Читать дальше →

Программа курса «Multicore programming in Java»

Reading time3 min
Views53K
Добрый день.
Меня зовут Головач Иван, я руковожу небольшой образовательной компанией. Мы занимаемся онлайн курсами программирования.

Также я веду курс «Scala for Java Developers» на платформе для онлайн-образования udemy.com (аналог Coursera/EdX).

Хотелось бы услышать мнение сообщества по поводу
  1. программы курса «Multicore programming in Java»
  2. литературы к курсу

Кратко о курсе: стартует 28 апреля (в связи с майскими праздниками старт перенесен на 15 мая), ведется в режиме вебинаров дважды в неделю в 19.00-22.00, состоит из 16 лекций по 2.5 часа (=40 лекционных часов), к каждой лекции дается расширенное задание, рассчитан на Java Junior/Middle.
Читать дальше →

Сравниваем производительность reflection в JDK8 и JDK7

Reading time6 min
Views23K
Привет, Хабр!

Недавно, путешествуя по коду своего рабочего проекта набрел на довольно высоконагруженный spring бин, который производил обращения к методам объектов (иногда и объектов сгенерированных на лету классов) вызывая геттеры и сеттеры объекта через reflection. В бине уже был реализован кэш геттеров, однако я задался вопросом — насколько быстр reflection и можно ли сделать быстрее.


Читать дальше →

Алгоритмы о выборе дороги и сетях. Сети Штейнера. Лекция Владимира Протасова в Яндексе

Reading time6 min
Views36K
Сегодня мы поговорим об одной из первых задач теории больших сетей, которая может быть решена полностью на самом простом базовом уровне, но которая от этого не становится менее интересной. Это задача о кратчайшей системе дорог или задача Штейнера.

Впервые она появилась, когда еще никаких практических надобностей для больших сетей не было: в тридцатые годы XX века. На самом деле Штейнер начал ее изучать еще раньше, в XIX веке. Это была чисто геометрическая задача, практические приложения которой стали известны только несколько десятилетий спустя.

Разговор пойдет о той области математики, которая впоследствии выросла в теорию больших сетей и разбилась на несколько областей. Это прикладная отрасль, которая задействует очень много методов из других математических дисциплин: дискретной математики, теории графов, функционального анализа, теории чисел и т.д. Бурное развитие теории больших сетей пришлось на конец девяностых и начало двухтысячных годов. Связано это конечно, с прикладными задачами: развитием интернета, мобильной связи, транспортных задач для больших городов. Кроме того теория сетей используется в биологии (нейронные сети), при построении больших электронных плат и т.п.



Сама задача формулируется очень просто. Есть несколько точек на плоскости, которые нужно связать системой дорог наименьшей суммарной длины таким образом, чтобы по этим дорогам можно было из каждой точки добраться в любую другую. Число точек конечно.

Начать рассказ стоит с истории о том, как на Малом мехмате двум группам учеников – восьмиклассникам и одиннадцатиклассникам дали решать одну и ту же задачу. Четыре деревни расположены в вершинах квадрата со стороной четыре километра. Существует ли система дорог, которая связывала бы все эти деревни между собой и имела бы суммарную длину не превосходящую 11 километров.
Конспект лекции

Особенности выделения памяти в OpenCL

Reading time4 min
Views13K

Введение


Здравствуйте, дорогие читатели.

В данном посте я постараюсь рассмотреть особенности выделения памяти для объектов OpenCL.

OpenCL является кросс-платформенным стандартом гетерогенных вычислений. Не секрет, что на нём пишут программы тогда, когда от них требуется скорость выполнения. Как правило, подобный код нуждается во всесторонней оптимизации. Всякий GPGPU-разработчик знает, что операции с памятью зачастую являются самым слабым звеном в скорости работы программы. Так как в природе существует великое множество аппаратных платформ, поддерживающих OpenCL, то вопрос организации объектов памяти зачастую становится головной болью. То, что хорошо работает на Nvidia Tesla, оснащённых локальной памятью и соединённых широкой шиной с глобальной, отказывается показывать приемлемую производительность на SoC, имеющих совершенно иную архитектуру.

Об особенностях выделения памяти для систем с общей памятью CPU и GPU и пойдёт речь в данном посте. Использование типов памяти Image оставим в стороне и сосредоточимся на наиболее общеупотребительном типе Buffer. В качестве стандарта будем рассматривать версию 1.1, как наиболее распространённую. В начале проведём краткий теоретический курс, а затем рассмотрим несколько примеров.

Читать дальше →

Реализация алгоритма SSSP на GPU

Reading time8 min
Views17K

Аннотация


В данной статье хочу рассказать как можно эффективно распараллелить алгоритм SSSP — поиска кратчайшего пути в графе с использованием графических ускорителей. В качестве графического ускорителя будет рассмотрена карта GTX Titan архитектуры Kepler.

Введение


В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Для решения данной задачи на CPU существует, по крайней мере, два известных алгоритма: алгоритм Дейсктры и алгоритм Форда-Беллмана. Так же существуют параллельные реализации алгоритма Дейстры и Форда-Беллмана на GPU. Вот основные статьи, в которых описаны решения данной задачи:
Читать дальше →

Splay-деревья

Reading time8 min
Views67K
Сбалансированное дерево поиска является фундаментом для многих современных алгоритмов. На страницах книг по Computer Science вы найдете описания красно-черных, AVL-, B- и многих других сбалансированных деревьев. Но является ли перманентная сбалансированность тем Святым Граалем, за которым следует гоняться?

Представим, что мы уже построили дерево на ключах и теперь нам нужно отвечать на запросы, лежит ли заданный ключ в дереве. Может так оказаться, что пользователя интересует в основном один ключ, и остальные он запрашивает только время от времени. Если ключ лежит далеко от корня, то запросов могут отнять времени. Здравый смысл подсказывает, что оценку можно оптимизировать до , надстроив над деревом кэш. Но этот подход имеет некоторый недостаток гибкости и элегантности.

Сегодня я расскажу о splay-деревьях. Эти деревья не являются перманентно сбалансированными и на отдельных запросах могут работать даже линейное время. Однако, после каждого запроса они меняют свою структуру, что позволяет очень эффективно обрабатывать часто повторяющиеся запросы. Более того, амортизационная стоимость обработки одного запроса у них , что делает splay-деревья хорошей альтернативой для перманентно сбалансированных собратьев.
Читать дальше...

Путеводитель по методам класса java.util.concurrent.CompletableFuture

Level of difficultyEasy
Reading time7 min
Views92K
Появившийся в Java8 класс CompletableFuture — средство для передачи информации между параллельными потоками исполнения. По существу это блокирующая очередь, способная передать только одно ссылочное значение. В отличие от обычной очереди, передает также исключение, если оно возникло при вычислении передаваемого значения.

Класс содержит несколько десятков методов, в которых легко потеряться. Данная статья классифицирует эти методы по нескольким признакам, чтобы в них было легко ориентироваться.
Читать дальше →

F.A.Q. по Java-конференции JPoint 2014

Reading time2 min
Views10K

Эпиграф


Конференция JPoint — реальный явский хардкор, по локоть в кровище.

Дима Завалишин, http://dz.livejournal.com/878711.html


Что? Где? Когда?


В пятницу, 18 апреля, в Москве пройдёт Java-конференция JPoint для Middle/Senior-разработчиков. В программе — доклады от ведущих специалистов, представляющих компании Oracle, Одноклассники, Deutsche Bank, JetBrains, Devexperts и др.

Подробности

Математические выражения в .NET (разбор, дифференцирование, упрощение, дроби, компиляция)

Reading time19 min
Views42K
Мне со школьных времен был интересен алгоритм вывода аналитических производных и упрощения выражений. Данная задача была актуальна впоследствии и в вузе. Тогда-то я реализовал ее, только получилось все не так, как хотелось: вместо кода IL у меня просто генерировался C# код в текстовом виде, сборки не выгружались, ну и к тому же не было возможности вывода производных в аналитическом виде. Однако потом я решил все-таки реализовать такую библиотеку, так как интерес остался. Стоит отметить, что таких библиотек в интернете большое количество, но нигде я не нашел именно этапа компиляции выражений в IL код, т.е. по сути везде выполняется интерпретация, которая не столь эффективна, в отличие от компиляции. Ну и к тому же я это разрабатывал чисто для себя, для изучения новых технологий, особо не надеясь, что результат моих трудов может где-нибудь потребоваться. Для нетерпеливых: исходники, программа.

Используемые программы и библиотеки


  1. GOLD Parsing System — IDE для написания грамматик и генерации кода лексеров и парсеров под различные языки (C, C#, Java, JavaScript, Objective-C, Perl, Python, Ruby и др.). Основана на LALR парсинге.
  2. Visual Studio 2010
  3. GOLD.Engine — сборка под .NET, подключаемая для взаимодействия со сгенерированными таблицами.
  4. NUnit — Открытая среда юнит-тестирования приложений для .NET.
  5. ILSpy — OpenSource дизассемблер под .NET.

Этапы, на которые я разбил весь процесс:
  1. Построение дерева выражения
  2. Вычисление аналитической производной
  3. Упрощение (симплификация) выражения
  4. Обработка рациональных дробей
  5. Компиляция выражения

Читать дальше →

Параллельные и распределенные вычисления. Лекции от Яндекса для тех, кто хочет провести праздники с пользой

Reading time3 min
Views79K
Праздничная неделя подходит к концу, но мы продолжаем публиковать лекции от Школы анализа данных Яндекса для тех, кто хочет провести время с пользой. Сегодня очередь курса, важность которого в наше время сложно переоценить – «Параллельные и распределенные вычисления».

Что внутри: знакомство с параллельными вычислениями и распределёнными системами обработки и хранения данных, а также выработка навыков практического использования соответствующих технологий. Курс состоит из четырех основных блоков: concurrence, параллельные вычисления, параллельная обработка больших массивов данных и распределенные вычисления.



Лекции читает Олег Викторович Сухорослов, старший научный сотрудник Центра грид-технологий и распределенных вычислений ИСА РАН. Доцент кафедры распределенных вычислений ФИВТ МФТИ. Кандидат технических наук.
Содержание и тезисы лекций

Классические паттерны проектирования на Scala

Reading time14 min
Views37K
Об авторе:
Pavel Fatin работает над Scala plugin'ом для IntelliJ IDEA в JetBrains.

Введение



В этой статье будут представлены примеры того, как реализуются классические паттерны проектирования на Scala.

Содержание статьи составляет основу моего выступления на JavaDay конференции (слайды презентации).

Читать дальше →

Знаете ли Вы массивы?

Reading time5 min
Views130K
Думаю, мало кто из готовящихся к своему первому интервью, при приеме на первую работу в должности (pre)junior программиста, ответит на этот вопрос отрицательно. Или хотя бы усомнится в положительном ответе. Конечно, такая простая структура данных с прямым доступом по индексу — никаких подвохов! Нет, в некоторых языках типа JavaScript или PHP массивы, конечно, реализованы очень интересно и по сути являются много большим чем просто массив. Но речь не об этом, а о «традиционной» реализации массивов в виде «сплошного участка памяти». В этом случае на основании индексов и размера одного элемента просто вычисляется адрес и осуществляется доступ к соответствующему значению. Что тут сложного?
Давайте разберемся

Искусственный интеллект для программистов

Reading time5 min
Views90K
Как случилось, что искусственный интеллект успешно развивается, а «правильного» определения для него до сих пор нет? Почему не оправдались надежды, возлагавшиеся на нейрокомпьютеры, и в чем заключаются три главные задачи, стоящие перед создателем искусственного интеллекта?

На эти и другие вопросы вы найдете ответ в статье под катом, написанной на основе выступления Константина Анисимовича, директора департамента разработки технологий ABBYY, одного из ведущих экспертов страны в сфере искусственного интеллекта.
При его личном участии были созданы технологии распознавания документов, которые применяются в продуктах ABBYY FineReader и ABBYY FormReader. Константин рассказал об истории и основах разработки AI на одном из мастер-классов для студентов Технопарка Mail.Ru. Материал мастер-класса и стал базой для цикла статей.

Всего в цикле будет три поста:
Искусственный интеллект для программистов
Применение знаний: алгоритмы поиска в пространстве состояний
• Получение знаний: инженерия знаний и машинное обучение
Читать дальше →

Пару слов о распознавании образов

Reading time13 min
Views314K
Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.
image

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ — много времени, которого часто нет, становится всё ещё печальнее.
Распознать

Алгоритм быстрого поиска слов в игре балда

Reading time7 min
Views48K
Как-то в одной социальной сети наткнулся на игру балда с нестандартными правилами (большие поля и узелки). Программы-подбиралки в основном работают по классическим правилам и на полях 5х5. Поэтому у меня появился спортивный интерес написать свою подбиралку полностью адаптированную под нестандартные правила. Причем не просто написать подбиралку, а реализовать максимально быстрый алгоритм поиска слов.

Читать дальше →

Алгоритм кластеризации данных FTCA

Reading time4 min
Views14K

Предисловие


Гуляя по англоязычным просторам интернета в поисках решения одной из наболевших тем на работе, наткнулся на очень интересный алгоритм под названием «Fast Threshold Clustering Algorithm». Данный алгоритм кластеризации, что примечательно, появился сравнительно недавно, а именно в ноябре этого года и автором является Дэвид Варади. Ссылка на первоисточник будет доступна в конце статьи.
Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity