За один проход
7 min
Среди задач по программированию часто попадаются такие: дана последовательность однотипных элементов (обычно это числа), требуется за один проход по ней найти какую-нибудь характеристику (среднее квадратическое отклонение, количество минимальных элементов, непрерывный участок с наибольшей суммой...) Дополнительное ограничение — последовательность может быть очень длинной, и в память не поместится. Других ограничений на элементы последовательности, обычно, не накладывается.
С этими задачами всё, более или менее, понятно: нужно найти то, что на мехмате МГУ называют «индуктивным расширением» искомой функции, и реализовать её вычисление. Если найти не удалось (требуемый объём памяти слишком велик), то задача не решается.
Но попадаются и другие задачи. В них есть дополнительные ограничения на элементы последовательности в совокупности, и эти ограничения приходится существенно использовать для решения (и проверять их не надо). Простейшая такая задача выглядит так:
Задача 1. В последовательности записаны целые числа от 1 до N в произвольном порядке, но одно из чисел пропущено (остальные встречаются ровно по одному разу). N заранее неизвестно. Определить пропущенное число
Решение очевидно: просматриваем числа, находим их количество K и сумму S. По условию, N=K+1, значит, сумма чисел от 1 до N будет равна (K+1)*(K+2)/2, и пропущенное число равно (K+1)*(K+2)/2-S. Если вы почему-то боитесь переполнений, то работайте с беззнаковыми числами (там переполнения не страшны — но будьте осторожны при вычислении (K+1)*(K+2)/2 :) ), или вместо суммы ищите XOR всех чисел.
С этими задачами всё, более или менее, понятно: нужно найти то, что на мехмате МГУ называют «индуктивным расширением» искомой функции, и реализовать её вычисление. Если найти не удалось (требуемый объём памяти слишком велик), то задача не решается.
Но попадаются и другие задачи. В них есть дополнительные ограничения на элементы последовательности в совокупности, и эти ограничения приходится существенно использовать для решения (и проверять их не надо). Простейшая такая задача выглядит так:
Задача 1. В последовательности записаны целые числа от 1 до N в произвольном порядке, но одно из чисел пропущено (остальные встречаются ровно по одному разу). N заранее неизвестно. Определить пропущенное число
Решение очевидно: просматриваем числа, находим их количество K и сумму S. По условию, N=K+1, значит, сумма чисел от 1 до N будет равна (K+1)*(K+2)/2, и пропущенное число равно (K+1)*(K+2)/2-S. Если вы почему-то боитесь переполнений, то работайте с беззнаковыми числами (там переполнения не страшны — но будьте осторожны при вычислении (K+1)*(K+2)/2 :) ), или вместо суммы ищите XOR всех чисел.










Порой встречаются такие артефакты природы, что начинаешь невольно задумывать о разных конспирологических теориях и альтернативной истории. Сегодня я хотел бы поговорить о разных малоизвестных и не очень аспектах операционной системы MS-DOS. Историй про дос на хабре было огромное множество: краткие очерки, подробная хронология, мемуары ностальгирующих, но никто ни разу не отмечал про MS-DOS 4.0 от 1985 года. Я считаю это очень важным звеном развития операционных систем для IBM PC, но удивительно мало информации о таком важном переходном этапе. Это буквально утерянная ветка доса и найти про нее информацию большая проблема. Что бы вы подумали если бы услышали о поддержке в DOS вытесняющей многозадачности, виртуальной памяти, свопа, семафоров и IPC. Фантастика?