В качестве практического приложения к предыдущей статье, хочу предоставить крошечную JavaScript библиотеку для построения деревьев и леса принятия решений.
- @stemm
User
Raytracing render на C
12 min
76KИмея опыт разработки на одном из высокоуровневых языков программирования, а также интерес к задачам из различных областей информатики, я наконец нашел возможность овладеть еще одним инструментом — языком программирования С. Исходя из собственного опыта — знания лучше усваиваются, если применять их для решения практических задач. Поэтому, было решено реализовать с нуля Ray tracing рендер (поскольку увлекаюсь компьютерной графикой ещё со школьных времен).
В данной статье хочу поделиться собственным подходом и полученными результатами.
В данной статье хочу поделиться собственным подходом и полученными результатами.
+103
Энтропия и деревья принятия решений
8 min
121KДеревья принятия решений являются удобным инструментом в тех случаях, когда требуется не просто классифицировать данные, но ещё и объяснить почему тот или иной объект отнесён к какому-либо классу.
Давайте сначала, для полноты картины, рассмотрим природу энтропии и некоторые её свойства. Затем, на простом примере, увидим каким образом использование энтропии помогает при создании классификаторов. После чего, в общих чертах сформулируем алгоритм построения дерева принятия решений и его особенности.
Давайте сначала, для полноты картины, рассмотрим природу энтропии и некоторые её свойства. Затем, на простом примере, увидим каким образом использование энтропии помогает при создании классификаторов. После чего, в общих чертах сформулируем алгоритм построения дерева принятия решений и его особенности.
+80
Эволюция агентов управляемых нейронной сетью
4 min
39KДавайте рассмотрим среду: в ней могут существовать частицы «еды» и агенты. С помощью сенсоров агенты могут получать информацию о среде. Если агент находится достаточно близко к частице пищи, то она считается «съеденной» и исчезает, а в тот же самый момент в случайном месте среды появляется новая частица еды. Задача группы агентов — собирать пищу. Эффективность рассматривается исходя из суммарного количества собранной пищи.
Давайте смоделируем конкурентную среду для автоматического поиска оптимального поведения группы агентов. Алгоритм поведения агентов будем конструировать в виде нейронной сети.
Давайте смоделируем конкурентную среду для автоматического поиска оптимального поведения группы агентов. Алгоритм поведения агентов будем конструировать в виде нейронной сети.
+36
Символьная регрессия
8 min
41KПри решении задач с применением методов машинного обучения, как правило, мы выбираем наиболее подходящий алгоритм в контексте задачи, а также способ настройки его параметров.
Давайте рассмотрим несколько иной подход: вместо того, чтобы самостоятельно выбирать алгоритм, разработаем программу, которая способна автоматически генерировать алгоритмы для решения задач.
Давайте рассмотрим несколько иной подход: вместо того, чтобы самостоятельно выбирать алгоритм, разработаем программу, которая способна автоматически генерировать алгоритмы для решения задач.
+70
Information
- Rating
- Does not participate
- Registered
- Activity