Search
Write a publication
Pull to refresh
13
0
Send message

Анализ аудиоданных (часть 3)

Reading time15 min
Views12K

Машинное обучение

В третьей части анализа аудиоданных мы разберем относительно простой и более быстрый способ классификации аудиофайлов - алгоритм машинного обучения - SVM (Support Vector Machines) / машины опорных векторов.

В двух частях анализа аудиоданных мы рассмотрели характеристики, которые есть у каждого аудиосигнала и извлечение значимых характеристик.

Мы получили набор данных, содержащий значимые характеристики аудиоданных (45 значений) в машиночитаемом виде - Двухмерная таблица - Dataframes, состоящая из 47столбцов и 50000 строк.

1 часть

2 часть

Все признаки (характеристики) важны при анализе аудиоданных, так как описывают физические свойства звука: высоту, громкость, тембр и т. д.

При прохождении воздуха через голосовые связки возникают вибрации, которые в виде упругих волн распространяются в среде. Каждый звук представляет собой набор волн. Это основной тон - волны гендерной идентификации ( у каждого говорящего базовая частота основного тона  индивидуальна и обусловлена особенностями строения гортани, в среднем для мужского голоса она составляет от 80 до 210 Гц, для женского - от 150 до 320 Гц. ). Это волны - обертоны ( призвуки, которые выше основного тона) и волны форманты (распознавание речи) связанные с уровнем частоты голосового тона, которые образуют тембр звука.

Читать далее

Анализ аудиоданных (часть 2)

Reading time7 min
Views15K

В первой части анализа аудиоданных мы рассмотрели характеристики, которые есть у каждого аудиосигнала.

Анализ аудиоданных (часть1) - https://habr.com/ru/post/668518/

Характеристики аудиофайлов для разных аудио записей.

В наборе аудиоданных есть Human files - 10322 файла ( записи “живого” голоса (класс 1)) и Spoof files - 39678 файлов ( записи синтетического/конвертированного/перезаписанного голоса (класс 2)) . В одном аудиофайле (3 - 6 сек) голос мужской или женский что-то говорит на каком-то языке (английском, русском, немецком, китайском)

Вот так выглядят характеристики аудиофайлов для разных аудио записей:

Читать далее

Анализ аудиоданных (часть 1)

Reading time8 min
Views29K

Каждый аудиосигнал содержит характеристики. Из MFCC (Мел-кепстральных коэффициентов), Spectral Centroid (Спектрального центроида) и Spectral Rolloff (Спектрального спада) я провела анализ аудиоданных и извлекла характеристики в виде среднего значения, стандартного отклонения и skew (наклон) с помощью библиотеки librosa.

Для классификации “живого” голоса (класс 1) и его отделению от синтетического/конвертированного/перезаписанного голоса (класс 2) я использовала алгоритм машинного обучения - SVM (Support Vector Machines) / машины опорных векторов. SVM работает путем сопоставления данных с многомерным пространством функций, чтобы точки данных можно было классифицировать, даже если данные не могут быть линейно разделены иным образом. Для работы я использовала математическую функцию, используемой для преобразования (известна как функция ядра) - RBF (радиальную базисную функцию).

В первой части анализа аудиоданных разберем:

Читать далее

Основы Интерактивных карт

Reading time7 min
Views38K

Для визуализации интерактивных карт рассмотрим библиотеку - Folium.

Folium — это мощная библиотека визуализации данных в Python, которая была создана в первую очередь для того, чтобы помочь людям визуализировать гео-пространственные данные.

Folium - это библиотека с открытым исходным кодом, созданная на основе возможностей Datawrangling экосистемы.

С помощью Folium можно создать карту любого местоположения в мире, если вы знаете его значения широты и долготы.

Также можете создать карту и наложить маркеры, а также кластеры маркеров поверх карты для крутых и очень интересных визуализаций.

Folium - это библиотека Python, которая помогает создавать несколько типов карт Leaflet. Тот факт, что результаты Folium интерактивны, делает эту библиотеку очень полезной для создания информационных панелей.

На официальной странице документации Folium:

Читать далее

Работа с отсутствующими значениями в Pandas

Reading time9 min
Views94K

Когда значение данных для объекта для определенного наблюдения не сохраняется, это означает, что эта функция имеет недостающее значение. Обычно отсутствующее значение в наборе данных отображается как вопросительный знак , ноль, NaN или просто пустая ячейка. Но как можно справиться с недостающими данными?

Конечно, каждая ситуация отличается и должна оцениваться по-разному. Есть много способов справиться с недостающими значениями. Рассмотрим типичные варианты на примере набора данных - 'Titanic'. Эти данные являются открытым набором данных Kaggle.

Для анализа необходимо импортировать библиотеки Python и загрузить данные.

Для загрузки используется метод Pandas - read.csv(). В скобках указывается путь к файлу в кавычках, чтобы Pandas считывал файл во фрейм данных (Dataframes - df) с этого адреса. Путь к файлу может быть URL адрес или вашим локальным адресом файла.

Читать далее

Information

Rating
Does not participate
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Registered
Activity