Как стать автором
Обновить

IoT шлюз Ethernet-RS485 на базе STM32

Время на прочтение6 мин
Количество просмотров26K

Привет, Хабр!


Данный пост посвящён DIY разработке Ethernet-RS485 шлюза. Цель данного шлюза – обеспечение централизованного управления нодами Mysensors со стороны контроллера умного дома.


imageНедавно меня таки достали провода, дюпоны, навесная пайка и т.п. и было принято давно оттягиваемое решение — сделать свои платы с нуля, т.е. всё по серьёзному. :)
Сказано — сделано!


Первым делом была разработана и нарисована принципиальная схема шлюза, в которой я постарался учесть все свои хотелки и пожелания. Далее произведена компоновка и подгонка платы под требуемые размеры (50x50мм). И последний этап, это заказ плат на производстве. Я заказывал на фабрике JLCPCB, 5 плат — 2$ + доставка.


Данный шлюз построен на базе МК STM32F103CB(8)T6. В качестве Ethernet чипа выступает достаточно известная микросхема от WIZnet — W5500. Транспортом данного шлюза в сети Mysensors является проводной интерфейс RS485. В качестве драйвера RS485 был выбран чип — MAX13488EESA+T, в том числе и в связи с наличием у него режима автоматического выбора направления приёма/передачи.


Итак пройдёмся поподробнее по основным частям шлюза.


Сердцем шлюза является МК STM32F103CBT6 в корпусе 48LQFN. МК построен на ядре Cortex-M3, имеет 128Кб встроенной флэш памяти и 20Кб ОЗУ. Штатная частота МК — 72МГц, но если не использовать встроенный USB порт, то частоту можно разогнать и до 128МГц, он на ней вполне стабильно работает. МК питается от 3.3В. Для полноценной работы нужны два кварца, на 8МГц и 32.768КГц. Для программирования и отладки имеется интерфейс SWD. МК можно заменить и на STM32F103C8T6, он на данный момент по памяти вполне проходит.


Ethernet чип W5500. Внутри имеет ядро Cortex M0, для связи с внешним миром присутствует порт SPI (скорость до 80 МГц). При скорости 100Mbps Full Link имеет потребление в 132мА. Есть поддержка Wake on LAN, для обозначения своего режима умеет управлять 4 светодиодами 4 (SPD / DUP / ACT / Link). В наличии 32 кбайт буферной памяти RAM для обеспечения процесса передачи TCP/IP пакетов, аппаратно обеспечивает до 8 независимых TCP/UDP сокетов (канальных соединений). Аппаратно поддерживает следующие коммутационные протоколы обработки проводного TCP/IP стека: TCP, UDP, MAC, ICMP, IPv4, ARP, IGMP, PPPoE. Диапазон рабочих температур -40...85°C. Напряжение питания — 3.3В.


И наконец драйвер RS485 — MAX13488EESA+T. Микросхема в корпусе SOIC-8 150mil. Скорость передачи данных до 16 Mb/s. Рабочее напряжение — 5В, потребляемый ток — 4.5 мA. Позволяет подключать до 128 узлов на одну линию RS485. Из главных особенностей это возможность включения режима автоматического определения направления приёма/передачи, т.е. данный драйвер может подключаться напрямую к порту UART и всё! Никаких лишних телодвижений совершать не надо.


Принципиальная схема шлюза разбита на три части:


Принципиальная схема

Схема RS485 части шлюза.



Схема МК и его периферии.



Схема части Ethernet.



Т.к. шлюз в сети Mysensors является единой точкой отказа, то к нему предъявляются повышенные требования по надёжности и безопасности. И в первую очередь он должен быть гальванически развязан от самой линии RS485. Для гальванической развязки линии данных была установлена микросхема — цифровой изолятор от TEXAS INSTRUMENTS — ISO7321CDR. Для развязки по питанию был использован изолированный DC/DC преобразователь от Traco Power – TME0505S. Защита драйвера RS485 от высоковольтных импульсов при необходимости реализовывается отдельной платой. Единственно, в виду своей компактности был оставлен защитный диод (подавитель ЭСР) VD1.


В результате многочисленных оптимизаций и передвижек, был получен следующий результат.


Рендеринг шлюза

Верхний слой.



Нижний слой.



3D — вид сверху.



3D — вид снизу.



Теперь поподробнее о схеме. Для функционирования шлюза, от МК нам необходим один порт USART и один порт SPI. МК STM32F103CBT6 имеет 3 порта USART с максимальной скоростью до 4.5Mbits/s. И два SPI порта. В результате компромисса (компоновка деталей на плате), для взаимодействия с драйвером RS485 был выбран порт USART1 (ноги PB6, PB7 с ремапом). А для взаимодействия с W5500 — порт SPI1 (ноги PA4-7).


Подключение Ethernet контроллера W5500 выполнено в соответствии с рекомендациями производителя. Единственное, что может вызвать некоторые сложности, это высокоточные резисторы, которых может не оказаться в наличии в местном радиоларьке. Но на сайте lcsc.com и ему подобных с данными резисторами всё в порядке. Для Ethernet разъёма был выбран широко распространённый бюджетный модуль — HR911105A, имеющий на борту трансформатор и два светодиода.


Самое сложное в данной плате, это запаять две 48-ножечные lqfp микросхемы. Если с этим справились, то дальнейшая сборка не представляет никаких сложностей. Настроек плата не требует и сразу после сборки готова к работе.


Хоть это и шлюз, но чтобы не пропадать добру на плате были разведены практически все пины МК, разведён ресет, и два светодиода (один из них RGB). Сделаны две площадки под микросхемы, одна под I2C EEPROM и вторая для цифрового термометра/измерителя влажности HDC1080. Термометр конечно будет измерять общую температуру по больнице, так как он установлен рядом с двумя чипами, но мало ли, вдруг кому понадобиться.


В качестве разъёма для RS485 был выбран, трёх пиновый зелёный разъём DB2EV-5.08-3P, с шагом 5.08мм. Он конечно великоват, но удобен в использовании. Остальные разъёмы за исключение microUSB выбраны — 1.25мм JST, они достаточно компактны и хорошо фиксируются.


Фото собранного шлюза

Вид сверху



Вид снизу



Для питания платы необходимы 5В, которые можно подать через разъём microUSB, либо через разъём Power. 5В питание необходимо драйверу RS485, микросхеме гальванической развязки и DC/DC преобразователю. Т.к. МК STM32 и Ethernet чип требуют питания 3.3В, на плате предусмотрен LDO регулятор — на базе микросхемы LDL1117S33R. На линиях питания 5 и 3.3В установлены танталовые и керамические конденсаторы. Большинство используемых смд компонентов — 0603.


Т.к. у всех всегда ситуации и подходы бывают разные, то некоторые вещи оставлены на откуп
пользователю. Если нам не нужна гальваническая развязка от линии RS485, то мы можем не устанавливать изолирующий DC/DC преобразователь — D1, микросхему опторазвязки — D3. В таком случае надо напаять "соплей" в предназначенные для этого места на плате.


Смотреть


По необходимости устанавливаем резисторы R31, R32 и R2, защитный диод VD3.


При первом включении на столе, шлюз нормально видел ноду, прошивки в неё залетали за 30 секунд, всё было хорошо. И да, планируемая мной скорость сети RS485 — 0.5-1Mbit. В доме будет 1Mbit, на улице 0.5Mbit. Так вот когда я поставил шлюз на его рабочее место в серверную, а ноду подключил к устройству на улице, я вполне ожидаемо столкнулся с тем, что они друг друга не увидели. С помощью осциллографа я мог наблюдать весьма удручающую картину линии RS485, но пара подтягивающих резисторов R31 и R32 быстро решила данную проблему. На фото шлюза, данные резисторы подпаяны проводками. Дело в том, что изначально я не планировал ставить их на шлюз, т.к. они нужны только на концах линии RS485, а шлюз у меня планировался в середине. Но когда подключена только одна нода, они всё же нужны и поэтому они были добавлены во второй ревизии. Терминирующий резистор на 120Ом устанавливается прямо в разъём RS485, так его проще переносить от устройства к устройству при наращивании линии.


Как это ни удивительно, но плата первой ревизии показала полную работоспособность и стабильную работу. За несколько месяцев не произошло ни одного зависания. Но с другой стороны ещё не было и гроз, а данный шлюз у меня смотрит как-раз на улицу.


Но — поживём увидим! :)


Таким образом была выполнена основная задача — создать компактный, высокоскоростной и надёжный Ethernet-RS485 шлюз. Чтобы не расплываться мыслями по древу, статья сосредоточена только на железной части, а программная часть сознательно вынесена за скобки.


Репозиторий с проектом шлюза


С радостью отвечу на конструктивные вопросы.


Для интересующихся постройкой УД на базе Mysensor существует русскоязычная группа в телеграмм — https://t.me/mysensors_rus и русскоязычный сайт — mysensors.ru.


image PS Моя первая разработанная плата — универсальная нода Mysensors для сети RS485. Она про наполнению и разработке гораздо сложнее и интереснее данного шлюза. Если данная тема будет интересна, то моя следующая статья будет о ней.


P.P.S. Цель данной статьи показать, что нет ничего сложного в разработке и создании своих собственных плат и готовых устройств. Главное ставить цель и идти к ней!


P.P.P.S. Хочу заметить, что для меня это хобби и всего лишь вторая собственноручно разработанная плата, поэтому просьба сильно не пинать. :)


P.P.P.P.S 20.02.2020 — обновил плату (третья ревизия). Добавил гальванические зазоры, кондёры по 0.1uF (где их не было). Возможность установки подтягивающего резистора на ногу RO MAX13488 (его номинал над подбирать по месту) и объединения земли GND_isolate с RS485_ground.

Теги:
Хабы:
Всего голосов 23: ↑21 и ↓2+28
Комментарии71

Публикации

Истории

Ближайшие события