Эта статья была вдохновлена циклом лекций «КЭД — странная теория света и вещества», который был прочитан Ричардом Фейнманом за несколько лет до его смерти (фактически он уже был в то время смертельно болен). Более конкретно — следующими цитатами:
Часто в «популярных» изложениях науки кажущаяся простота достигается за счет описания чего-то совсем другого, за счет существенного искажения того, что берутся описывать. Уважение к нашему предмету не позволило нам (редактором был Ральф Лейтон) этого сделать. Мы провели в обсуждениях много часов, стараясь добиться максимальной ясности и простоты, и бескомпромиссно отвергали искажения истины.
Люди всегда спрашивают о последних достижениях, например, насколько эта теория совместима с другой теорией, и в результате они не дают нам возможности рассказать о том, в чём мы хорошо разбираемся. Они хотят знать то, чего мы сами не знаем.
Так о чём же собирался популярно рассказать Ричард Фейнман? Дело в том, что ему повезло и фонд предоставил ему возможность высказаться, не прибегая к привычным фигурам умолчания, успешно маскирующих смысл происходящего тем сложившимся «птичьим» языком, к которому обычно прибегают в общении между собой физики‑теоретики. Он впервые получил карт‑бланш выступить «в целях ежегодного проведения цикла лекций, которые приобщали бы думающих и заинтересованных людей к идеям и достижениям науки». В результате ему удалось высказать своё предчувствие о «Величайшей проклятой тайне Физики». Его лекции оказались столь эмоционально окрашенными, что его биографы разобрали их на цитаты.
Итак, речь идёт о том, чему Ричард Фейнман посвятил свои последние исследования — постоянной тонкой структуры (она же ПТС, она же альфа). В то время уже прошло более пятидесяти лет с того, как ПТС была введена в 1916 году Зоммерфельдом:
где — элементарный электрический заряд,
— постоянная Дирака (или приведённая постоянная Планка)
— скорость света в вакууме,
— электрическая постоянная (раньше — диэлектрическая проницаемость вакуума).
Новая константа объединила четыре фундаментальных константы физики и поставила крест на основном теоретическом методе того времени: вариационном исчислении. Поскольку его универсальность уже была утрачена даже при разработке физических теорий с одним ограничением на или
. Прошедшие с тех пор годы показали, что даже усилия Эйнштейна по рекламе единой теории поля оказались безрезультатными. Видимо поэтому у Фейнмана и возникло предчувствие, что «Величайшую проклятую тайну Физики» уже «заметают под ковер». В результате актуальные проблемы сначала становятся привычными, а затем многие из них незаметно трансформируются в вечные.
Просто поразительно, насколько он был прав, если даже сегодня никто не хочет узнать, чем же всё кончилось.
С тех пор, как его открыли свыше пятидесяти лет назад, это число остаётся тайной. Все хорошие физики‑теоретики выписывают это число на стене и мучаются из‑за него. … хотелось бы узнать, как появляется это число: выражается ли оно через
, или, может быть, через основание натуральных логарифмов
? Никто не знает. Это одна из величайших проклятых тайн физики: магическое число, которое дано нам и которого человек совсем не понимает. Можно было бы сказать, что это число написала «рука Бога», и «мы не знаем, что двигало Его карандашом». Мы знаем, что надо делать, чтобы экспериментально измерить это число с очень большой точностью, но мы не знаем, что делать, чтобы получить это число на компьютере — не вводя его туда тайно!
С числом Фейнман ошибся. Оно действительно присутствует в процессе вывода, но сокращается в финале. А вот основание натуральных логарифмов
является жемчужиной ПТС. Более того, оно позволяет идентифицировать автора, который заложил математическую основу ПТС.

С точки зрения математики, XVIII век — это век Эйлера. Если до него достижения в области математики были разрознены и не всегда согласованы, то Эйлер впервые связал анализ, алгебру, геометрию, тригонометрию, теорию чисел и другие дисциплины в единую систему, добавив при этом немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру» почти без изменений.
Благодаря Эйлеру в математику вошли общая теория рядов, фундаментальная «формула Эйлера» в теории комплексных чисел, операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, обозначение для мнимой единицы, ряд специальных функций и число Эйлера
.
В частности, Эйлер продолжил исследования связи константы как символа неявной
и константы
как символа явной
, где число Эйлера — одна из важнейших математических констант, которую он определил следующим образом:
На основе введённого им числа и возникло так называемое нормальное распределение
В 1729 году в Санкт-Петербурге Леонард Эйлер рассчитал «неберущийся» интеграл
В нём константы и
присутствуют явно. А вот ПТС ещё явно не видно. Для выявления ПТС необходима квантификация нормального распределения:
Отсюда и возникает реализация мечты Эйлера — квантификация монотонных экспоненциальных функций превращает их в колебательные тригонометрические, а именно в пространственную решётчатую функцию (ПРФ):

Вычтем из функции постоянную
где и
.
Первый остаток показан на следующем рисунке.
(Все рисунки остатков см. здесь)

Из рисунка хорошо видно, что первый остаток можно аппроксимировать косинусом с коэффициентом:
А вот теперь начинается самое интересное. Дело в том, что ПРФ является фракталом!
Фракталом может называться предмет, обладающий по крайней мере одним из указанных ниже свойств:
Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
Является самоподобным или приближённо самоподобным.
Многие объекты в природе обладают свойствами фрактала, например побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы. А теперь какое-то отношение к фракталам получают и фундаментальные взаимодействия! Есть над чем подумать.

Вторая разность. Начиная со второй разности разложение состоит из двух самоподобных функций. Первая из них изображена слева, а вторая на следующем рисунке.
Последующие рисунки показывают лишь увеличение частоты при уменьшении масштаба. Поэтому расчёты рисунков должны выполняться программами длинной арифметики.

Я использовал для получения пятой разности числа длиной 100 знаков.
Таким образом, становится понятно, что на пути к ПТС существовали многочисленные проблемы. Более того, с самого начала возникла значительная группа исследователей, надеявшихся найти ПТС на фу‑фу. Особенно в этом отличился известный астроном Эддингтон. В то время измерения ПТС давали результат, очень близкий к 1/136, и Эддингтон утверждал, что значение на самом деле должно быть точно 1/136, исходя из эпистемологических причин. Более поздние измерения дали значение гораздо ближе к 1/137, после чего он сменил логику своих рассуждений, утверждая, что единица должна быть добавлена к степеням свободы, так что значение должно быть точно 1/137, «число Эддингтона». Шутники в то время начали называть его «Артур Добавь‑один» (Артур Эддингван). Такое изменение мнения снизило авторитет Эддингтона в физическом сообществе.
Нумерологический подход явно демонстрирует, что его приверженцы явно не понимают саму идею теории всего: ПТС должна быть применима ко всем фундаментальным взаимодействиям сразу. Более того, если производящая функция выдаёт ПТС в какой-то степени, то это означает, что такое фундаментальное взаимодействие существует.
Таким образом, априорная теория всего утверждает, что интенсивность фундаментальным взаимодействий пропорциональна
На сегодняшний день эта формула экспериментально подтверждается на интервале в 39 порядков.
На первый взгляд, этот результат является лишь уточнением существующих законов. Однако всё изменяется в сочетании с формулой Дирака,
где и
— заряды магнитного монополя Дирака,
— заряд электрона и
— заряд позитрона. Из этой формулы следует, что интенсивность взаимодействия магнитных монополей наибольшая. Таким образом, магнитные монополи должны объединиться в кристалл и замкнуться сами на себя. А затем из теории твёрдого тела следует, что в таком кристалле появятся дефекты, которые и являются элементарными частицами и взаимодействуют между собой менее интенсивными взаимодействиями. В результате получается, что Дирак гениально ввёл новую элементарную частицу только для того, чтобы она была недостижимой.
Самое интересное заключается в том, что разложения в ряд по степеням ПТС пространственной и временной функций дают уравнения размножения нейтронов в естественных термоядерных реакторах — звёздах.
Буду рад услышать вопросы, а не голословные утверждения.
Вслед за Фейнманом хочу сказать, что продолжение для думающих и заинтересованных людей к новым идеям и достижениям науки следует.