Плотностный алгоритм кластеризации пространственных данных с присутствием шума — DBSCAN
3 мин
Доброго времени суток!
Хотел бы с вами поделиться реализацией в MATLAB плотностного алгоритма для кластеризации пространственных данных с присутствием шума — DBSCAN (Density Based Spatial Clustering of Applications with Noise).
Алгоритм DBSCAN был предложен Мартином Эстер, Гансом-Питером Кригель и коллегами в 1996 году как решение проблемы разбиения (изначально пространственных) данных на кластеры произвольной формы. Большинство алгоритмов, производящих плоское разбиение, создают кластеры по форме близкие к сферическим, так как минимизируют расстояние документов до центра кластера. Авторы DBSCAN экспериментально показали, что их алгоритм способен распознать кластеры различной формы.
Хотел бы с вами поделиться реализацией в MATLAB плотностного алгоритма для кластеризации пространственных данных с присутствием шума — DBSCAN (Density Based Spatial Clustering of Applications with Noise).
Особенности
Алгоритм DBSCAN был предложен Мартином Эстер, Гансом-Питером Кригель и коллегами в 1996 году как решение проблемы разбиения (изначально пространственных) данных на кластеры произвольной формы. Большинство алгоритмов, производящих плоское разбиение, создают кластеры по форме близкие к сферическим, так как минимизируют расстояние документов до центра кластера. Авторы DBSCAN экспериментально показали, что их алгоритм способен распознать кластеры различной формы.





Давным-давно, когда я был ещё наивным школьником, мне вдруг стало жутко любопытно: а каким же волшебным образом данные в архивах занимают меньше места? Оседлав свой верный диалап, я начал бороздить просторы Интернетов в поисках ответа, и нашёл множество статей с довольно подробным изложением интересующей меня информации. Но ни одна из них тогда не показалась мне простой для понимания — листинги кода казались китайской грамотой, а попытки понять необычную терминологию и разнообразные формулы не увенчивались успехом.

