Как стать автором
Поиск
Написать публикацию
Обновить
77.31

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

Data Mining: Первичная обработка данных при помощи СУБД. Часть 3 (Сводные таблицы)

Время на прочтение7 мин
Количество просмотров18K
Данная серия посвящена анализу данных для поиска закономерностей. В качестве примера используется одна из обучающих задач сообщества спортивного анализа данных Kaggle. Хотя размеры данных для задачи не большие, методы обработки, которые будут рассматриваться вполне применимы для больших объемов данных.
После выполнения Часть 1 и Части 2 сформировались две таблицы, содержащие преобразованные данные.
titanik_test_3 и titanik_train_3.
Читать дальше →

Data Mining: Первичная обработка данных при помощи СУБД. Часть 2

Время на прочтение7 мин
Количество просмотров23K
Каждые полчаса появляется новая статья с кричащим лозунгом Большие данные — «новая нефть»!. Просто находка для маркетинговых текстов. Большие Данные = Большая Нефть = Профит. Откуда взялось данное утверждение? Давайте выйдем за рамки штампа и копнем чуть глубже:
Одним из первых его употребил Майкл Палмер[1] еще в 2006 году:
Данные это просто сырая нефть. Она ценна, но без переработки она не может быть по-настоящему использована. Она должна быть превращена в газ, пластик, химикаты, и т.д., чтобы создать ценность, влекущую прибыльность; так и данные нужно проанализировать и «раскусить», чтобы они стали ценными.

Такое понимание трендового «Большие данные — новая нефть!» ближе к реальности чем к маркетингу. И совсем не отменяет высказывания Дизраели:
«Существуют три вида лжи: Есть ложь, наглая ложь и статистика».
Данная статья является продолжением топика Data Mining: Первичная обработка данных при помощи СУБД. Часть 1
Продолжим добычу!

Читать дальше →

Microsoft HDInsight. «Облачное» (и не только) будущее Hadoop

Время на прочтение7 мин
Количество просмотров9.6K
Объем данных, генерируемый и собираемый современными научно-исследовательским центрами, финансовыми институтами, социальными сетями, уже привычно измеряется петабайтами. Так в дата-центрах Facebook хранится уже более 15 млрд. изображений, нью-йоркская фондовая биржа NYSE создает и реплицирует ежедневно около 1 Тб данных, Большой адронный коллайдер получает около 1 Пб данных в секунду.

Очевидно, что задачи обработки больших объемов данных все чаще становятся не только перед крупными компаниями, но перед стартапами и небольшими исследовательскими группами.

Платформа Hadoop, которая, в принципе, успешно решает проблему Big Data для полу- и неструктурированных данных, в своем «чистом» виде предъявляет значительные требования как к квалификации администраторов Hadoop-кластера, так и к первоначальным финансовым затратам на аппаратное обеспечение такого кластера.

В такой ситуации симбиоз облачных технологий и платформы Hadoop все чаще представляется как крайне перспективный способ решения проблемы «Больших данных», имеющий крайне невысокий уровень входа (квалификация + затраты на запуск).
Узнать будущее

Data Mining: Первичная обработка данных при помощи СУБД. Часть 1

Время на прочтение9 мин
Количество просмотров58K
О чем статья

В задачах исследования больших объемов данных есть множество тонкостей и подводных камней. Особенно для тех, кто только начинает исследовать скрытые зависимости и внутренние связи внутри массивов информации. Если человек делает это самостоятельно, то дополнительной трудностью становится выбор примеров, на которых можно учиться и поиск сообщества для обмена мнениями и оценки своих успехов. Пример не должен быть слишком сложным, но в тоже время должен покрывать основные проблемы, возникающие при решении задач приближенных к реальности, так чтобы задача не воспринималась примерно вот так:

С этой точки зрения, очень интересным будет ресурс Kaggle[1], который превращает исследование данных в спорт. Там проводят соревнования по анализу данных. Некоторые соревнования — с обучающими материалами и предназначены для начинающих. Вот именно обучению анализу данных, на примере решения одной из обучающих задач, и будет посвящён цикл статей. Первая статья будет о подготовке данных и использованию СУБД для этой цели. Собственно, о том, как и с чего начать. Предполагается что читатель понимает SQL.
Читать дальше →

12 инструментов, о которых необходимо знать каждому программисту, работающему с Big Data

Время на прочтение5 мин
Количество просмотров35K
Проектируете ли вы систему для анализа Big Data или просто пытаетесь собирать и обрабатывать данные своих мобильных приложений, вам никак не обойтись без качественных инструментов для аналитики. Хорошей новостью является то, что в данный момент множество компаний выпускают на рынок инструменты, учитывающие потребности разработчиков и соответствующие их навыкам.
Читать дальше →

Инвесторы возлагают большие надежды на Big Data

Время на прочтение3 мин
Количество просмотров6.8K
Необходимость в анализе больших объемов информации быстро выходит за рамки исключительно коммерческого использования.
Big Data оказывает серьезное влияние на решения, принимаемые людьми, начиная с выборов президента и заканчивая покупкой чашечки кофе. Сфера анализа больших объемов информации стала настолько прибыльной, что инвесторы из штата Массачусетс торопятся найти очередную будущую многомиллиардную компанию, чтобы успеть инвестировать в нее сейчас.
На сегодняшний день коммерческое использование Big Data в основном существует в виде контекстной рекламы – стоит только вспомнить пророческий в этом плане сервис Google ads.
Читать дальше →

Big Data – почему это так модно?

Время на прочтение5 мин
Количество просмотров11K
Технологии Big Data сегодня очень популярны, о чем говорит хотя бы то, что на текущий момент это наиболее часто встречающийся термин в IT-публикациях. Достаточно посмотреть на статистику таких известных поисковых систем, как Google или Yandex по словосочетанию «Big Data», и становится понятным, что так называемые «Большие Данные» действительно сейчас можно назвать одним из самых востребованных и интересных направлений развития информационных технологий.

Так в чем же секрет популярности этих технологий и что означает термин «Big Data»?
Читать дальше →

MapReduce 2.0. Какой он современный цифровой слон?

Время на прочтение10 мин
Количество просмотров29K


Если ты ИТшник, то нельзя просто так взять и выйти на работу 2-го января: пересмотреть 3-ий сезон битвы экстрасенсов или запись программы «Гордон» на НТВ (дело умственных способностей вкуса).
Нельзя потому, что у других сотрудников обязательно будут для тебя подарки: у секретарши закончился кофе, у МП — закончились дедлайны, а у администратора баз данных — амнезия память.
Оказалось, что инженеры из команды Hadoop тоже любят побаловать друг друга новогодними сюрпризами.

2008


2 января. Упуская подробное описание эмоционально-психологического состояния лиц, участвующих в описанных ниже событиях, сразу перейду к факту: поставлен таск MAPREDUCE-279 «Map-Reduce 2.0». Оставив шутки про число, обращу внимание, что до 1-ой стабильной версии Hadoop остается чуть менее 4 лет.

За это время проект Hadoop пройдет эволюцию из маленького инновационного снежка, запущенного в 2005, в большой снежный com ком, надвигающийся на ИТ, в 2012.
Ниже мы предпримем попытку разобраться, какое же значение январский таск MAPREDUCE-279 играл (и, уверен, еще сыграет в 2013) в эволюции платформы Hadoop.
...

Teradata – СУБД, параллельная от рождения

Время на прочтение5 мин
Количество просмотров37K
Приветствуем, уважаемые Хабравчане. Последнее время на Хабре стало мелькать название компании Teradata в тех или иных вопросах. И, увидев возможный интерес, мы решили рассказать немного о том, что же такое СУБД Teradata, от первого лица. Мы планируем подготовить небольшую серию статей о самых интересных, на наш взгляд, технических особенностях СУБД и работы с ней. Если у вас есть опыт работы с Teradata или в вашей компании используется наша платформа и у вас есть вопросы – подкидывайте их, и мы либо ответим на них в комментариях, либо подготовим соответствующую полноценную статью. А начнем с небольшого обзора. Для знакомства, так сказать.
Читать дальше →

Что такое In-Memory Data Grid

Время на прочтение5 мин
Количество просмотров67K
Обработка данных in-memory является довольно широко обсуждаемой темой в последнее время. Многие компании, которые в прошлом не стали бы рассматривать использование in-memory технологий из-за высокой стоимости, сейчас перестраивают архитектуру своих информационных систем, чтобы использовать преимущества быстрой транзакционной обработки данных, предлагаемых данными решениями. Это является следствием стремительного падения стоимости оперативной памяти (RAM), в результате чего становится возможным хранение всего набора операционных данных в памяти, увеличивая скорость их обработки более чем в 1000 раз. In-Memory Compute Grid и In-Memory Data Grid продукты предоставляют необходимые инструменты для построения таких решений.

Задача In-Memory Data Grid (IMDG) — обеспечить сверхвысокую доступность данных посредством хранения их в оперативной памяти в распределённом состоянии. Современные IMDG способны удовлетворить большинство требований к обработке больших массивов данных.

Упрощенно, IMDG — это распределённое хранилище объектов, схожее по интерфейсу с обычной многопоточной хэш-таблицей. Вы храните объекты по ключам. Но, в отличие от традиционных систем, в которых ключи и значения ограничены типами данных «массив байт» и «строка», в IMDG Вы можете использовать любой объект из Вашей бизнес-модели в качестве ключа или значения. Это значительно повышет гибкость, позволяя Вам хранить в Data Grid в точности тот объект, с которым работает Ваша бизнес-логика, без дополнительной сериализации/де-сериализации, которую требуют альтернативные технологии. Это также упрощает использование Вашего Data Grid-а, поскольку в большинстве случаев Вы можете работать с распределённым хранилищем данных как с обычной хэш-таблицей. Возможность работать с объектами из бизнес-модели напрямую — одно из основных отличий IMDG от In-Memory баз данных (IMDB). В последнем случае пользователи всё ещё вынуждены осуществлять объектно-реляционное отображение (Object-To-Relational Mapping), которое, как правило, приводит к значительному снижению производительности.
Читать дальше →

Vertica на HighLoad++

Время на прочтение2 мин
Количество просмотров6K
Вчера было мое выступление на HighLoad++. Тезисы и слайды на сайте организаторов. Конференция организована, кстати, отлично. Но времени на полноценное выступление было мало — 45 минут с вопросами. Тестовый прогон у меня занял 60 минут, после некоторой реорганизации и без вопросов на HL я уложился за 42. Некоторые важные архитектурные моменты пришлось проговаривать быстро и без примеров, от чего, конечно, страдала ясность. Я пытался построить презентацию таким образом, чтобы показать, как мы необходимым образом пришли к Вертике и к текущей архитектуре, и в то же время сделать акцент на важных архитектурных принципах работы с большими данными вообще. Не уверен, что цель была в полной мере достигнута. Мало, мало времени. Но я всегда открыт для вопросов. Вертика, впрочем, вызвала заслуженный интерес, вопросы были по делу.

А сегодня было выступление Криса Бонна из etsy.com, и, удивительное дело, он тоже рассказывал про Вертику.
Читать дальше →

NewSQL — новый виток в эволюции BigData, забираем лучшее из SQL и NoSQL

Время на прочтение4 мин
Количество просмотров22K

NewSQL


Начало

Сегодня очень легко наблюдать стремительный рост данных в интернете. Согласно одной оценке, данные, созданные в 2010, составляют приблизительно 1,200 ЭБ (1018 байт) и вырастут почти к 8,000 ЭБ к 2015 в Интернете, являющимся основным поставщиком данных к потребителю.

Этот рост опережает рост вместимости, приводя к появлению систем управления информацией, где данные хранятся распределенным способом, но получают доступ и анализируют, как будто они находятся на одной машине.

Пока программисты всего мира устраивают глобальные Holywars на тему: «SQL vs NoSQL», крупные компании, такие как Google и Facebook со своей миллиардной аудиторией всеми силами борются с нехваткой мощностей и предельными работами СУБД. Несмотря на появление новой технологии NoSQL, которая позволяла легко масштабировать данные, она так и не решила вопросы связанные с соответствием операций требованиям ACID (atomicity, consistency, isolation, durability — «атомарность, непротиворечивость, изолированность, долговечность») — стандарта, который гарантирует точность выполнения оперативных транзакций средствами СУБД, даже если работа системы прерывалась. На фоне всего этого компания VoltDB при поддержке нескольких других компаний, начали разрабатывать с чистого листа новый opensource проект под название NewSQL, сочетающий в себе лучшие стороны SQL и NoSQL.
Читать дальше →

Два интервью о железе и виртуализации

Время на прочтение1 мин
Количество просмотров4.1K
Кузьма Пашков рассказывает о железе ЕМС, о железе вообще, и о том, кто на самом деле принимает решение «какое железо поставить?» о том, что это вопрос религии.



Интервью с инструктором VMware Сергеем Даниленко. Разговор идет о тренде виртуализации, об ИТ-аутсорсинге и др.





МУК-Сервис — все виды ИТ ремонта: гарантийный, не гарантийный ремонт, продажа запасных частей, контрактное обслуживание

Ближайшие события

Эластичный MapReduce. Распределенная реализация

Время на прочтение8 мин
Количество просмотров9.3K
Так случилось, что первый посмотренный мною фильм с упоминанием слова «суперкомпьютер» был Терминатор. Но, как ни странно, моя (тогда еще) не сформировавшаяся психика не посчитала скайнет мировым злом, списав агрессивное поведение первого в мире ИИ на недостаточное покрытие юнит тестами.

На тот момент у меня был ZX Spectrum (чьих 128 Kb явно не хватало на запуск чего-то похожего на ИИ) и много (думаю лет 10) свободного времени. Благодаря последнему факту, я благополучно дождался эры виртуализации. Можно было снять хоть 10K VPS, установить между ними канал связи и начинать создавать ИИ. Но мне хотелось заниматься программированием, а не администрированием/конфигурацией grid-системы, и я разумно начал ждать, когда вычислительные ресурсы начнут предоставляться как сервис.

Моей радости не было конца, когда появились облачные сервисы. Но радость длилась недолго: стало понятно, что пока прямые коммуникации между отдельными вычислительными инстансами – это фантастика код, который нужно писать самому (то есть с большой вероятностью он работать не будет). Попереживав пару лет по этому поводу, я (мы все) дождался Hadoop, сначала «on-premises», а потом и эластичного «on-demand». Но и там, как оказалось, не всё так эластично гладко
Читать дальше →

Стоит ли платить за Apache Hadoop?

Время на прочтение9 мин
Количество просмотров31K


В 2010 году Apache Hadoop, MapReduce и ассоциированные с ними технологии привели к распространению нового явления в сфере информационных технологий, названного «большими данными» или «Big Data». Понимание того, что из себя представляет платформа Apache Hadoop, зачем она нужна и для чего её можно использовать потихоньку проникает в умы специалистов по всему миру. Зарожденный, как идея одного человека, и быстро выросший до промышленных масштабов, Apache Hadoop стал одной из самых широко обсуждаемых платформ для распределенных вычислений, а также платформой для хранения неструктурированной или слабо структурированной информации. В этой статье я хотел бы подробнее остановиться на самой платформе Apache Hadoop и рассмотреть коммерческие реализации, предоставляемые сторонними компаниями, и их отличия от свободно распространяемой версии Apache Hadoop.
Читать дальше →

Коллаборативная фильтрация

Время на прочтение6 мин
Количество просмотров73K
В современном мире часто приходится сталкиваться с проблемой рекомендации товаров или услуг пользователям какой-либо информационной системы. В старые времена для формирования рекомендаций обходились сводкой наиболее популярных продуктов: это можно наблюдать и сейчас, открыв тот же Google Play. Но со временем такие рекомендации стали вытесняться таргетированными (целевыми) предложениями: пользователям рекомендуются не просто популярные продукты, а те продукты, которые наверняка понравятся именно им. Не так давно компания Netflix проводила конкурс с призовым фондом в 1 миллион долларов, задачей которого стояло улучшение алгоритма рекомендации фильмов (подробнее). Как же работают подобные алгоритмы?

В данной статье рассматривается алгоритм коллаборативной фильтрации по схожести пользователей, определяемой с использованием косинусной меры, а также его реализация на python.


Читать дальше →

Просто и доступно о аналитических БД

Время на прочтение17 мин
Количество просмотров77K
Интерес к технологиям Big Data постоянно растет, а сам термин приобретает все большую популярность, многие люди хотят поговорить об этом, обсудить перспективы и возможности в этой области. Однако немногие конкретизируют — какие компании представлены на этом рынке, не описывают решения этих компаний, а также не рассказывают про методы, лежащие в основе решений Big Data. Область информационных технологий, относящихся к хранению и обработке данных, претерпела существенные изменения к настоящему моменту и представляет собой стремительно растущий рынок, а значит лакомый кусок для многих всемирно известных и небольших, только начинающих, компаний в этой сфере. У типичной крупной компании имеется несколько десятков оперативных баз данных, хранящих данные об оперативной деятельности компании (о сделках, запасах, остатках и т.п.), которые необходимы аналитикам для бизнес-анализа. Так как сложные, непредвиденные запросы могут привести к непредсказуемой нагрузке на оперативные базы данных, то запросы аналитиков к таким базам данных стараются ограничить. Кроме того, аналитикам необходимы исторические данные, а также данные из нескольких источников. Для того чтобы обеспечить аналитикам доступ к данным, компании создают и поддерживают так называемые хранилища данных, представляющие собой информационные корпоративные базы данных, предназначенные для подготовки отчетов, анализа бизнес-процессов и поддержки системы принятия решений. Хранилища данных служат также источником для оценки эффективности маркетинговых кампаний, прогнозированию, поиску новых возможных рынков и аудиторий для продажи, всевозможному анализу предыдущих периодов деятельности компаний. Как правило, хранилище данных – это предметно-ориентированная БД, строящаяся на временной основе, т.е. все изменения данных отслеживаются и регистрируются по времени, что позволяет проследить динамику событий. Также хранилища данных хранят долговременные данные — это означает, что они никогда не удаляются и не переписываются – вносятся только новые данные, это необходимо для изучения динамики изменения данных во времени. И последнее, хранилища данных, в большинстве случае, консолидированы с несколькими источниками, т.е. данные попадают в хранилище данных из нескольких источников, причем, прежде чем попасть в хранилище данных, эти данные проходят проверку на непротиворечивость и достоверность.
Читать дальше →

Мифология Data Science

Время на прочтение6 мин
Количество просмотров23K


The future belongs to the companies and people that turn data into products

Человечество никогда не стояло на месте – суровый закон выживания постоянно заставлял его двигаться вперед. В истории развития человечества революции происходили всегда – одно общество сменялось другим, а устаревшие технологии заменялись более прогрессивными. Последняя информационная революция связана с появлением персональных компьютеров в 80-е годы ХХ века.
Читать дальше →

Соединение исторических таблиц

Время на прочтение5 мин
Количество просмотров7.5K
Время от времени мне приходится сталкиваться с задачами, когда нужно в рамках имеющейся СУБД выполнить соединение двух и более исторических таблиц между собой, да так, чтобы получить красивые исторические интервалы на выходе. Зачем? Чтобы отчет смог правильно отобразить данные на выбранную пользователем дату, или приложение подтянуло в себя эти данные для обработки.
Часто коллеги и братья по цеху сталкиваются с подобными задачами и советуются как лучше их решить.
В этой статье я хочу поделиться опытом как решались различные ситуации подобного типа.
Читать дальше →
12 ...
194

Вклад авторов