Все потоки
Поиск
Написать публикацию
Обновить
748.3

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Период
Уровень сложности

Почему оценить стоимость датасета не так просто, как кажется на первый взгляд

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров1.8K

Представьте, что вы получили заказ на разметку датасета из 1,000 изображений. Вы берете 20 картинок из сета, проводите тесты и получаете примерную стоимость 1 изображения. В итоге вы оцениваете проект, основываясь на количестве изображений, и устанавливаете цену за каждое. Однако, когда данные приходят, оказывается, что на каждом изображении не один объект к разметке, как было на тестах, а десятки! В итоге вы тратите гораздо больше времени и средств, чем планировали в начале.

Как избежать таких распространенных ошибок и защитить свой бизнес от неожиданных затрат и задержек? Давайте обсудим, какие ошибки чаще всего возникают при оценке проектов по сбору и разметке данных для машинного обучения, и на что важно обращать внимание, чтобы гарантировать корректную оценку ваших проектов. Узнайте больше в статье Романа Фёдорова, эксперта в области подготовки датасетов для машинного обучения.

Читать далее

Как оценить LLM модель

Время на прочтение13 мин
Количество просмотров2.7K

В одном из прошлых блогов я представил концепцию тестирования LLM. Однако тестирование больших языковых моделей - достаточно сложная тема, которая требует дальнейшего изучения. Существует несколько соображений относительно тестирования моделей машинного обучения и, в частности, LLM, которые необходимо учитывать при разработке и развертывании вашего приложения. В этом блоге я предложу общую структуру, которая будет служить минимальной рекомендацией для тестирования приложений, использующих LLM, включая разговорные агенты, расширенную генерацию поиска и агентов и т. д.

Читать далее

Atlas: Как реконструировать 3D сцену из набора изображений

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров2.8K

Всем привет! Если вы увлекаетесь 3D-технологиями или просто хотите узнать больше о современных методах создания трехмерных моделей, вам точно стоит прочитать эту статью. Мы погрузимся в метод Atlas — уникальный способ 3D-реконструкции сцены на основе всего лишь 2D-изображений. Вы узнаете, как линейная регрессия и усеченная знаковая функция расстояния (TSDF) могут значительно упростить процесс моделирования, обеспечивая более точные результаты без необходимости использования карт глубины.

Мы рассмотрим ключевые концепции, такие как извлечение признаков с помощью 2D-CNN и превращение их в воксельные объёмы, а также узнаем, как 3D-CNN уточняет эти признаки для более глубокого понимания сцены. Даже если вы не знакомы с терминологией, я постараюсь объяснить всё доступным языком.

Читать далее
12 ...
93

Вклад авторов