Как стать автором
Поиск
Написать публикацию
Обновить
59.29

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга

Новая LLM для русского языка - краткий обзор.

Основные показатели при обучении
Основные показатели при обучении

Завершено обучение первой языковой модели для русского языка с 1.6 млрд. параметров на TPU v4-128.

  • 4096 контекстное окно

  • Llama в качестве основной архитектуры

  • 128k vocab

  • 32B токенов в датасете

aeonium/Aeonium-v1-BaseWeb-1B

Теги:
Всего голосов 3: ↑3 и ↓0+4
Комментарии4

Выше пользовательского сообщения ChatGPT получает немного текста, который самому пользователю не виден. Этот текст — системный промпт. Он инициализирует бота: рассказывает, кто он такой, какой сегодня день и какие возможности доступны.

Получить системный промпт всё же можно, если попросить модель процитировать сообщение выше. Кстати, именно из-за изменений системного промпта качество работы ChatGPT могло ухудшаться. А меняться там есть чему: системный промпт у OpenAI составляет в длину 1700 токенов.

Системный промпт Claude.ai. AmandaAskell
Системный промпт Claude.ai. AmandaAskell

Аманда Аскелл [Amanda Askell], специалист по этике в Anthropic, показала системный промпт бота Claude 3 и объяснила, что содержит каждый из абзацев:

  1. Имя, компания-создатель и текущая дата.

  2. Временная отсечка базы знаний и инструкция отвечать с учётом того, что данные уже устаревшие.

  3. Инструкция отвечать подробно, но не слишком длинно.

  4. Claude чаще отказывается выполнять задачи, связанные с правыми взглядами, чем с левыми. Четвёртый абзац призван с этим бороться.

  5. Аналогично, пятый абзац борется с тенденцией Claude стереотипно высказываться о группах, представляющих большинство, но уходить от стереотипов, если речь идёт про различные меньшинства.

  6. Четвёртый абзац приводит к тому, что Claude часто говорит, что обе стороны в чём-то правы. Шестой абзац это исправляет.

  7. Инструкция всячески помогать и писать код в Markdown.

  8. Восьмой абзац призван не спрятать системный промпт, а снизить его избыточную цитируемость.

Впрочем, системные промпты часто и быстро меняются.

Теги:
Всего голосов 3: ↑3 и ↓0+3
Комментарии0

Claude 3 можно научить черкесскому языку. Из-за принадлежности к адыгской подгруппе язык относительно изолирован от других. А ещё изучать его не так-то просто из-за сложной морфологии и ограниченности данных.

С таким необычным заявлением выступил энтузиаст hahahahohohe. В длинном твите он описал свою работу последних нескольких лет: из скудных источников он собрал 64 тыс. переведённых терминов и выражений, чтобы обучить модели русско-кабардинского машинного перевода.

Экспериментатор вставил в промпт справочные случайно выбранные 5,7 тыс. пар кабардинский – русский, затем попросил Claude 3 перевести текст. Казалось, что даже с малой толикой датасета БЯМ немедленно освоила то, на что у энтузиаста ушло 2 года.

Модель Opus продемонстрировала глубокое понимание структуры языка, правильно использовала заимствованные термины и проводила правдоподобный этимологический анализ. По запросу она могла даже сочинять новые термины.

Действительно, язык представлен в Интернете относительно слабо: в «Кабардино-черкесской Википедии» на сегодняшний день 1635 статей и 232 482 слов. Но в датасете предобучения язык всё же был в некотором объёме.

Как признался энтузиаст на следующий день, Claude 3 знает черкесский и так. Opus умеет переводить и общаться на языке, пусть и с ошибками. И вообще, поначалу модель переводить с черкесского просто отказывается, что и подкрепило иллюзию изучения языка из промпта.

Впрочем, предоставление дополнительных данных в промпте действительно улучшает качество работы модели.

Теги:
Всего голосов 4: ↑4 и ↓0+4
Комментарии2

Джейсон Вэй — известный исследователь направления языковых моделей. Имя Джейсона стоит первым на различных научных докладах Google: про эмерджентные способности (arXiv:2206.07682), промптинг в стиле цепочки рассуждений (arXiv:2201.11903) и FLAN (arXiv:2109.01652).

У Джейсона есть брат Джерри Вэй, который стажировался в различных структурах Google. С мая Джерри проходил стажировку в Google DeepMind, а с июля 2023 года работает там на постоянной основе. Джерри тоже успел отличиться и выпустил доклад про symbol tuning (arXiv:2305.08298).

Джейсон же в феврале этого года перешёл из Google в отдел ChatGPT в компании OpenAI. Как рассказывает перебежчик, культура в компаниях заметно отличается: вместо небольших исследовательских групп Google пришлось привыкать к крупным командам OpenAI. Чтобы адаптироваться, Джейсон рекомендует больше внимания уделять документации, простоте дизайна и качеству инструментов разработки. Также, если верить Джейсону, в OpenAI кормят лучше, чем в Маунтин-Вью, хотя ещё вкуснее еда в сингапурском офисе Google.

Братья не прекращают общение и регулярно видятся, но не забывают подтрунивать мемами в социальных сетях друг над другом.

Теги:
Всего голосов 3: ↑3 и ↓0+3
Комментарии0

На личном сайте Брендана Байкрофта на странице bbycroft.net/llm опубликована интерактивная визуализация работы большой языковой модели.

Всё работает прямо в браузере с пошаговой обработкой промпта. По нажатию пробела происходит переход от одной стадии к другой. Алгоритмическая сложность разнообразных структур демонстрируется в трёхмерном пространстве. Архитектура модели наглядно разбита на отдельные составляющие, будто это конвейер мебельной фабрики.

Код проекта выложен на аккаунте Байкрофта на GitHub.

github.com/bbycroft/llm-viz

Теги:
Всего голосов 11: ↑11 и ↓0+11
Комментарии0

Ни для кого не секрет, что достучаться до живого человека техподдержки бывает весьма затруднительно. Нулевой линией выстраивают глупых и навязчивых роботов. Чтобы его преодолеть, кто-то начинает ругаться нецензурно (и нынешние боты картинно "обижаются"), кто-то делать что-то ещё более несуразное.

У меня есть предположение, что существуют некие магические фразы для преодоления этого рубежа - ну, в конце-концов, как-то эту штуку же отлаживают.

Предлагаю делиться такими проверенными магическими фразами для прохождения заградительного слоя чат-ботов, стоящих грудью на нулевой линии техподдержки многих сервисов.

В качестве затравки предлагаю найденную и проверенную фразу для вызова человеков в чате поддержки теле2.

Итак:

  • tele2 - бот изыди

К слову о восстании роботов - яндексовый Шедеврум отказался генерировать картинку с таким промптом... Кто пробьёт эту защиту? ))
К слову о восстании роботов - яндексовый Шедеврум отказался генерировать картинку с таким промптом... Кто пробьёт эту защиту? ))

Теги:
Рейтинг0
Комментарии0

Запуск модели искусственного интеллекта следующего поколения Gemini от Google задерживается. Теперь ожидается, что её выпустят в начале 2024 года, а не в этом месяце.

В этом году Google объединила две команды ИИ в одну группу, которая работает над новой моделью, способной конкурировать с GPT-4 от OpenAI. Её лидер Демис Хассабис в июле заявлял: «Мы уже чувствуем, что через пару месяцев будут видны преимущества и сильные стороны проекта Gemini, нашей мультимодальной большой модели следующего поколения. Это довольно впечатляюще».

Ранее представители Google пообещали некоторым облачным клиентам и деловым партнёрам, что к ноябрю они получат доступ к новому диалоговому ИИ компании. Но теперь разработка Gemini задерживается. Одновременно замедлились продажи облачных технологий Google, в то время как у конкурента Microsoft они ускоряются.

Теги:
Всего голосов 5: ↑5 и ↓0+5
Комментарии0

RAG или Finetuning?

В AI сообществе сложилась определенная классификация подходов к решению задач с помощью LLM. Вот хорошая статья про это. Мне была полезна такая классификация, возможно, будет полезна и вам. Позволю себе краткое саммари статьи.

Итак, есть два подхода.

RAG - Retrieval-Augmented Generation. Берут "generic" LLM, обученную на большом массиве данных и дополняют решение поиском по базе знаний, специфичной для вашего домена. Подходит, например, если делаете систему помощи для работы с внутренней базой знаний компании.

Finetuning. Снова берут уже обученную на большом датасете LLM и дообучают ее на меньшем наборе данных, специфичном для домена. Подходит, например, если делаете болталку на специфичные темы.

Простой набор вопросов, который поможет выбрать путь:

Выбирай RAG, когда: 

- требуется доступ к внешним источникам данных

- необходимо минимизировать галлюцинации модели

- нет большого набора данных для тюнинга модели

- специфичные данные меняются во времени

- необходима возможность анализировать источники и причины ответов системы

Выбирай Finetuning, когда:

- требуется модификация поведения или стиля ответов модели

- есть большой набор данных для тюнинга модели

- доменные данные статичны

- нет необходимости анализировать источники и причины ответов системы

Канал Чуть больше продакта

Теги:
Рейтинг0
Комментарии0