Pull to refresh

❓100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_3

?Вопрос_3: Что такое преобразование Бокса-Кокса?

Преобразование Бокса-Кокса (Box-Cox transformation) - это преобразование, которое преобразует "ненормальные" зависимые переменные в нормальные переменные, так как нормальность является наиболее распространенным предположением при использовании многих статистических методов. Оно было предложено Георгом Боксом и Дэвидом Коксом в 1964 году.

Преображование Бокса-Кокса (Общий вид)
Преображование Бокса-Кокса (Общий вид)

Оно имеет параметр лямбда, который при значении "0" означает, что это преобразование эквивалентно лог-трансформации. Оно используется для стабилизации дисперсии, а также для нормализации распределения. Выбор оптимального значения параметра (лямбда) при использовании преобразования Бокса-Кокса может быть выполнен с использованием различных методов:

  1. Метод максимального правдоподобия: В этом подходе подбирается значение (лямбда), которое максимизирует правдоподобие модели. Это можно сделать с помощью численных методов оптимизации, таких как метод Ньютона-Рафсона или метод Брента;

  2. Критерии информационного критерия: можно использовать информационные критерии, такие как критерий Акаике (AIC) или критерий Шварца (BIC);

  3. Кросс-валидация: При этом данные разбиваются на обучающую и проверочную выборки, и производится оценка преобразования Бокса-Кокса для различных значений (лямбда) на обучающей выборке. Затем оцениваются результаты на проверочной выборке и выбирается лучшее значение.

    https://t.me/DenoiseLAB

Tags:
Rating0
Comments0

Articles