Обновить
4
0
Игорь Стурейко@SGarik

DataScientist, Time-series models, Finance models

Отправить сообщение

Введение в Weight & Biases

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели2.8K

В практике любого инженера машинного обучения обязательно присутствует инструмент для управления жизненным циклом машинного обучения: отслеживание экспериментов, управление и деплой моделей и проектов. В этой статье я кратко расскажу о таком инструменте компании Weight & Biases, незаслуженно обойденным вниманием на просторах рускоязычного пространства.

Работа в современных реалиях требуют быстрой разработки и оценки моделей. Существует множество компонентов: изучение обучающих данных, обучение различных моделей, объединение обученных моделей в различные комбинации (ансамблирование) и т. д.

Много компонентов = много мест, где можно ошибиться = много времени, потраченного на отладку. Вы можете упустить важные детали, и вам придется заново обучать модель, или вы можете обучиться на неправильных данных (утечка информации). Или вы можете использовать неправильную модель для генерации представления.

Именно здесь на помощь приходит W&B.

Читать далее

FinRL Торговля акциями с использованием фундаментального анализа

Уровень сложностиСредний
Время на прочтение14 мин
Охват и читатели2.1K

Это третья статья обучающего цикла, посвященного использованию библиотеки FinRL для построения автоматизированных торговых агентов. В первой статье рассматривалась библиотека FinRL в целом и описывались ее возможности, вторая статья была посвящена разработке примитивного агента, который ориентируется только на текущую цену и более ни на что.

В этой статье мы воспользуемся библиотекой FinRL для построения торгового агента на базе технического и фундаментального анализа. Мы объединим данные движения рынка и квартальной отчетности компаний, построим на их базе систему индикаторов и на ее основе поспробуем построить прогноз цены.

Для тех, кто захочет повторить представленный материал - исходный код и данные можно найти у меня на github'e.

Итак, продолжим наше знакомство с FinRL.

Читать далее

Автоматизированная торговля акциями с использованием глубокого обучения с подкреплением

Уровень сложностиСредний
Время на прочтение7 мин
Охват и читатели17K

В этой статье мы начинаем рассматривать практическое применение библиотеки FinRL для построения торгового агента. В предыдущей статье мы вкратце рассмотрели библиотеку FinRL, предоставляемые ей возможности моделирования рынка и обучения торговых агентов на основании алгоритмов обучения с подкреплением.

Это вторая статья нашего обучающего цикла и в ней мы построим примитивного агента, который анализирует поступающие данные о стоимости позиции на рынке и пытается предсказать будущую цену. Вполне очевидно, что результат такого примитивного агента будет весьма далек от приемлемого уровня, но этот шаг поможет нам создать модель рынка с помощью библиотеки FinRL, обучить агента и быть готовыми к построению более сложных и осмысленных моделей.

Читать далее

FinRL: Библиотека глубокого обучения с подкреплением для автоматизированной торговли акциями

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели17K

Глубокое обучение с подкреплением (Deep Reinforcement Learning - DRL) является эффективным подходом в количественных финансах. Однако обучение торгового агента DRL, который бы решал, где торговать, по какой цене и в каком количестве, сопряжено с ошибками, а так же со сложной разработкой и отладкой.

Библиотека FinRL облегчает новичкам знакомство с количественными финансами и разработку собственных стратегий торговли акциями. Она позволяет пользователям оптимизировать свои собственные разработки и легко сравнивать их с существующими схемами. В рамках FinRL виртуальные среды настраиваются с помощью наборов данных фондового рынка, торговые агенты обучаются с помощью нейронных сетей, а функционал обратного тестирования (backtesting) анализирует эффективность торговли. Кроме того, в систему включены важные торговые ограничения, такие как стоимость сделки, ликвидность рынка и степень неприятия риска инвестором. FinRL отличается полнотой, хорошим практическим руководством и воспроизводимостью, что упрощает работу новичкам.

Читать далее

Информация

В рейтинге
Не участвует
Откуда
Стамбул, Стамбул, Турция
Дата рождения
Зарегистрирован
Активность

Специализация

Ученый по данным, ML разработчик
Старший
Python
Алгоритмы и структуры данных
Прикладная математика
SQL
Машинное обучение
Deep Learning
Reinforcement learning
Математическое моделирование
Финансовая аналитика
Облачные вычисления