Как стать автором
Поиск
Написать публикацию
Обновить
6
0
Solovjov Daniil @YaphetS7

Deep Learning

Отправить сообщение

Это камень? Это ветка? Это нос! Разбираем подходы, помогающие ИИ распознавать лица на картинках с низким разрешением

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров1.4K

Привет, Хабр! Мы – Даниил Соловьев и Михаил Никитин из команды направления распознавания лиц. Сегодня фокусируемся на задаче распознавания лиц на изображениях низкого разрешения (low resolution face recognition, low-res FR). Она актуальна в первую очередь при анализе данных видеонаблюдения, так что если перед вами сейчас стоит подобная задача (или просто интересно, как она решается) — статья для вас. Расскажем про проблемы и сложности распознавания лиц низкого разрешения, подходы к решению задачи, в том числе свежий PETALface с конференции WACV 2025. Также поделимся ссылками на исследования, которые подробнее освещают каждый подход.

Читать далее

Как дообучать огромные модели с максимальным качеством и минимальными затратами? LoRA

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров5.7K

paper link

hf implementation

Для ответа на вопрос в заголовке - погрузимся в статью.

Саммари статьи:

Обычно LLM-ку предобучают на огромном корпусе, потом адаптируют на down-stream tasks. Если LLM-ка была большая, то мы не всегда можем в full fine-tuning. Авторы статьи предлагают Low-Rank Adaptation (LoRA), который замораживает предобученные веса модели и встраивает "rank decomposition matrices" в каждый слой трансформера, очень сильно понижая кол-во обучаемых параметров для downstream tasks.

Compared to GPT-3 175B fine‑tuned with Adam, LoRA can reduce the number of trainable parameters by 10,000 times and the GPU memory requirement by 3 times. LoRA performs on‑par or better than finetuning in model quality on RoBERTa, DeBERTa, GPT-2, and GPT-3, despite having fewer trainable parameters, a higher training throughput, and, unlike adapters, no additional inference latency.

Многие NLP-приложения требуют решения разных задач, что зачастую достигается путем дообучения большой модели на несколько разных downstream tasks. Самая важная проблема в классическом fine-tuning'е - новая модель содержит столько же параметров, сколько начальная.

Есть работы, где авторы адаптируют только некоторые параметры или обучают внешний модуль для каждой новой задачи. Таким образом, нам необходимо для каждой новой задачи хранить лишь веса, связанные с этой задачей. Однако, имеющиеся методы страдают от:

Inference latency (paper 1 - Parameter-Efficient Transfer Learning for NLP).

Reduced model's usable sequence length (paper 2 - Prefix-Tuning: Optimizing Continuous Prompts for Generation).

Часто не достигают бейзлайнов, если сравнивать с "классическим" fine-tuning'ом

Читать далее

Deep Learning — как это работает? Часть 4

Время на прочтение5 мин
Количество просмотров10K
Часть 1
Часть 2
Часть 3

В этой статье вы узнаете:

  • О том, что такое transfer learning и как это работает
  • О том, что такое semantic/instance segmentation и как это работает
  • О том, что такое object detection и как это работает
Читать дальше →

Deep Learning: как это работает? Часть 3 — архитектуры CNN

Время на прочтение6 мин
Количество просмотров11K
Часть 1
Часть 2


В этой статье вы узнаете:


  • О соревновании ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
  • О том, какие существуют архитектуры CNN:

    1. LeNet-5
    2. AlexNet
    3. VGGNet
    4. GoogLeNet
    5. ResNet
  • О том, какие проблемы появлялись с новыми архитектурами сетей, как они решались последующими:

    1. vanishing gradient problem
    2. exploding gradient problem
Читать дальше →

Deep Learning: как это работает? Часть 2

Время на прочтение3 мин
Количество просмотров11K
Часть 1 тут.

В этой статье вы узнаете


  • Что такое CNN и как это работает
  • Что такое карта признаков
  • Что такое max pooling
  • Функции потерь для различных задач глубокого обучения
Читать дальше →

Deep Learning: как это работает? Часть 1

Время на прочтение3 мин
Количество просмотров17K

В этой статье вы узнаете



-В чем суть глубокого обучения

-Для чего нужны функции активации

-Что такое FCNN

-Какие задачи может решать FCNN

-Каковы недостатки FCNN и с помощью чего с ними бороться

Читать дальше →

Идея инерции(SGDm), идея масштабирования (Adagrad) и регуляризация в машинном обучении на примере задачи классификации

Время на прочтение4 мин
Количество просмотров3.1K
Датасет, используемый далее, взят с уже прошедшего соревнования на kaggle отсюда.
На вкладке Data можно прочитать описание всех полей.

Весь исходный код здесь в формате ноутбука.
Читать дальше →

Стохастический градиентный спуск(SGD) для логарифмической функции потерь(LogLoss) в задаче бинарной классификации

Время на прочтение4 мин
Количество просмотров11K
Предыдущая часть (про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458

В этой статье я покажу решение задачи классификации сначала, что называется, «ручками», без сторонних библиотек для SGD, LogLoss'а и вычисления градиентов, а затем с помощью библиотеки PyTorch.
Читать дальше →

Линейная регрессия и градиентный спуск

Время на прочтение3 мин
Количество просмотров26K
Пусть в некоторой предметной области исследуются показатели X и Y, которые имеют количественное выражение.

При этом есть все основания полагать, что показатель Y зависит от показателя X. Это положение может быть как научной гипотезой, так и основываться на элементарном здравом смысле. К примеру, возьмем продовольственные магазины.

Обозначим через:

X — торговую площадь(кв. м.)

Y — годовой товарооборот(млн. р.)

Очевидно, что чем выше торговая площадь, тем выше годовой товарооборот(предполагаем линейную зависимость).

Представим, что у нас есть данные о некоторых n магазинах(торговая площадь и годовой товарооборот) — наш датасет и k торговых площадей(X), для которых мы хотим предсказать годовой товарооборот(Y) — наша задача.

Выдвинем гипотезу, что наше значение Y зависит от X в виде: Y = a + b * X

Чтобы решить нашу задачу, мы должны подобрать коэффициенты a и b.
Читать дальше →

Информация

В рейтинге
1 608-й
Откуда
Россия
Работает в
Зарегистрирован
Активность