Трансформерные архитектуры для рекомендаций: от SASRec до сегодняшнего дня. Сравниваем с помощью RecTools

Привет, Хабр! С вами Никита Зелинский, Chief Data Scientist МТС, директор по машинному обучению и исследованию данных MWS. В прошлый раз рассказывал, куда расти Data Scientist и какие навыки для этого нужны, а сегодня будет адаптация моего доклада с конференции True Tech Day. Полную видеоверсию можно посмотреть в комьюнити True Tech в VK.
Обсудим, как трансформеры меняют индустрию рекомендательных систем и почему это уже не просто хайп, а устойчивый стандарт, с которым работают в реальных продуктах. Покажу путь от базовых подходов к state-of-the-art-архитектурам, а еще объясню, как с помощью open-source-библиотеки RecTools от МТС можно сравнивать, конфигурировать и оптимизировать рекомендательные алгоритмы на практике.
Будет полезно тем, кто хочет разобраться, как устроены трансформерные рекомендательные модели. Приступим!