Добрый день, уважаемые читатели.
В сегодняшней статье я покажу основы разбора HTML разметки страниц с помощью библиотеки lxml для Python.
Если вкратце, то lxml это быстрая и гибкая библиотека для обработки разметки XML и HTML на Python. Кроме того, в ней присутствует возможность разложения элементов документа в дерево. В статье я постараюсь показать, насколько просто ее применение на практике.
Развеиваем страхи, ликвидируем безграмотность и уничтожаем мифы про железнорождённого слона. Под катом обзор экосистемы Hadoop-а, тенденции развития и немного личного мнения.
Сегодня мы рассмотрим алгоритм TILT (Transform Invariant Low-rank Texture) и множество его методов применения в области Computer Vision. Статья будет нести несколько обзорный характер, без плотного углубления в математические дебри.
Сначала я хотел честно и подробно написать о методах снижения размерности данных — PCA, ICA, NMF, вывалить кучу формул и сказать, какую же важную роль играет SVD во всем этом зоопарке. Потом понял, что получится текст, похожий на вырезки из опусов от Mathgen, поэтому количество формул свел к минимуму, но самое любимое — код и картинки — оставил в полном объеме.
В прошлый раз я рассказал, пока в самых общих чертах, о сингулярном разложении – главном инструменте современной коллаборативной фильтрации. Однако в прошлый раз мы в основном говорили только об общих математических фактах: о том, что SVD – это очень крутая штука, которая даёт хорошие низкоранговые приближения. Сегодня мы продолжим разговор об SVD и обсудим, как же, собственно, использовать всю эту математику на практике.
Продолжаем разговор о рекомендательных системах. В прошлый раз мы сделали первую попытку определить схожесть между пользователями и схожесть между продуктами. Сегодня мы подойдём к той же задаче с другой стороны – попытаемся обучить факторы, характеризующие пользователей и продукты. Если Васе из предыдущего поста нравятся фильмы о тракторах и не нравятся фильмы о поросятах, а Петру – наоборот, было бы просто замечательно научиться понимать, какие фильмы «о поросятах», и рекомендовать их Петру, а какие фильмы – «о тракторах», и рекомендовать их Васе.