• Что делает центральный процессор, когда ему нечего делать

    • Tutorial

    Мужик приходит устраиваться работать на стройку. Его спрашивает мастер:
    — Что делать умеешь?
    — Могу копать…
    — А что еще?
    — Могу не копать…

    Не секрет, что современные процессоры работают очень быстро. Работа их заключается в постоянном извлечении из памяти инструкций и выполнения предписанных в них действий. Однако оказывается, по тем или иным причинам часто требуется притормозить этот процесс. В прикладных программах редко приходится задумываться о том, что при этом происходит с процессором. Но вот для создателей системного софта это далеко не праздный вопрос.


    Неактивным процессор может быть не только для экономии энергии, но и в результате возникновения особых ситуаций, в процессе выполнения протоколов инициализации или как итог намеренных действий системных программ. Почему это интересно? При написании программных моделей (в том числе виртуальных машин) компьютерных систем, необходимо корректно моделировать переходы между состояниями виртуальных процессоров. В работе системных программ регулярно возникают ситуации, когда по тем или иным причинам ЦПУ должен «притормозить». Умение корректно использовать и моделировать эти ситуации зависит от знания и понимания спецификаций.


    В статье фокус делается на программной стороне вопроса состояний процессора. Я не буду концентрироваться на деталях реализации (напряжения, пины, частоты и т.д.), так как 1) они существенно различаются между поколениями и моделями процессоров даже одной архитектуры, тогда как программный интерфейс остаётся обратно совместимым; 2) они не видны напрямую программам и ОС. Это попытка просуммировать информацию, разбросанную по многим страницам справочника Intel IA-32 and Intel 64 Software Developer Manual.


    Начнём с простой и всем знакомой ситуации — процессор включён, бодр и весел.

    Читать дальше →
  • История мигрирования операционных систем

    • Перевод
    От переводчика: представляю вашему вниманию перевод статьи Майкла Штейла. Я давно хотел подготовить подобный обзор методов использования виртуализации для задач обеспечения совместимости. Я даже опубликовал некоторые заметки на эту тему: в учебнике по симуляции, глава 1, и на Хабре в посте про системные ВМ. Однако мне не удалось раскрыть вопрос так глубоко, как он представлен в этой работе. Поэтому я решил поделиться переводом с читателями.


    Производители операционных систем сталкиваются с этой проблемой один или два раза в десятилетие: им необходимо перевести свою пользовательскую базу со старой операционной системы на их сильно отличающуюся новую ОС, или им требуется перейти с одной архитектуры ЦПУ на другую с сохранением возможности запуска старых приложений без модификаций, а также помочь сторонним разработчикам портировать свои приложения на новую ОС.

    Давайте рассмотрим, как это происходило в последние 30 лет, на примерах MS DOS/Windows, Apple Macintosh, Amiga OS и Palm OS.


    Читать дальше →
    • +23
    • 19,3k
    • 8
  • PCEPTPDPTE

    • Перевод

    От переводчика. Представляю вашему вниманию перевод поста Майкла Штейла (Michael Steil) http://www.pagetable.com/?p=308. В нём затрагиваются вопросы сомнительной практики именования сущностей в спецификациях вычислительных архитектур.
    Эта заметка очень хорошо отражает ситуацию с именами, возникающую в процессе длительной эволюции документации, и моё собственное недоумение, когда я впервые встретился с этими понятиями.
    Комментарии к тексту размещены во всплывающих подсказках.
    Читать дальше →
    • +27
    • 11,2k
    • 2
  • Семь видов интерпретаторов виртуальной машины. В поисках самого быстрого

    • Tutorial
    Все проблемы в области Computer Science могут быть решены введением дополнительного уровня косвенности. За исключением одной: слишком большого числа уровней косвенности.
    All problems in computer science can be solved by another level of indirection, except for the problem of too many layers of indirection.

    Программные интерпретаторы известны своей невысокой скоростью работы. В этой статье я расскажу, как их можно ускорить.
    Я давно уже хотел поподробней остановиться на создании интерпретаторов. Прямо таки обещал, в том числе самому себе. Однако серьёзный подход требовал использования более-менее реалистичного кода для примеров, а также проведения измерений производительности, подтверждающих (а иногда и опровергающих) мои аргументы. Но наконец-то я готов представить почтенной публике результаты, причём даже чуть более интересные, чем собирался.
    В данной статье будет описано семь способов построения программной ВМ для одной гостевой системы. От самых медленных мы проследуем к более быстрым, поочерёдно избавляясь от различных «неэффективностей» в коде, и в конце сравним их работу на примере одной программы.
    Тех, кто не боится ассемблерных листингов, испещрённого макросами кода на Си, обильно удобренного адресной арифметикой, goto и даже longjmp, а также программ, использующих копипаст во имя скорости или даже создающих куски самих себя, прошу пожаловать под кат.
    Читать дальше →
  • Виртуальное время, часть 2: вопросы симуляции и виртуализации

    • Tutorial
    В предыдущей статье я рассмотрел существующие в платформе PC источники времени, их особенности, недостатки и историю. Теперь, вооружённые этим знанием, мы можем рассмотреть, как эти устройства могут быть представлены внутри виртуального окружения — полноплатформенного программного симулятора или системной виртуальной машины, т.е. программной среды, позволяющей запускать внутри себя операционную систему.
    В этой статье мы разберём различные способы представления времени внутри моделей, подходы к имитации работы таймеров, возможности аппаратного ускорения при виртуализации, а также трудности согласования течения времени внутри моделируемых окружений.



    Читать дальше →
  • Виртуальное время. Часть 1: источники времени в компьютере

    • Tutorial
    Человек, имеющий одни часы, твердо знает, который час. Человек, имеющий несколько часов, ни в чём не уверен.
    Закон Сегала
    Зачем нужно знать время внутри программы? На самом деле, довольно большое число алгоритмов, используемых на практике, вообще никак не зависят от того, который сейчас час. И это хорошо: история знает много случаев, когда программы, работавшие на старой аппаратуре, «ломаются» при выполнении на новой, более быстрой, как раз из-за завязанности на характерные временные длительности процессов.
    Я смог придумать три вида задач, которые требуют чтения текущего времени в повседневной жизни.
    1. Определять относительный порядок событий. Для этого используются часы, измеряющие время от «начала времён», «эпохи» или какого-то иного фиксированного события в прошлом.
    2. Измерять длительность процессов. Для этого используются секундомеры, таймеры.
    3. Не пропустить важное событие в будущем. Для этого нужны будильники.

    Внутри компьютеров ситуация аналогичная: временны́е устройства работают как один из трёх приборов, а иногда и как все три сразу.
    В этой части статьи я сделаю краткий обзор общих свойств устройств-измерителей времени, присутствующих в современных системах, опишу их особенности и проблемы. Во второй части статьи я расскажу об особенностях моделирования таймеров при создании симуляторов и мониторов виртуальных машин.


    Читать дальше →
  • Два мира виртуальных машин

      Виртуальный. В отличие от большинства модных компьютерных словечек, это понятие обычно соответствует своему словарному определению в тех случаях, когда речь идёт об аппаратуре или программах. Словарь «Random House College Dictionary» определяет «virtual» как «проявляющий свойства и эффекты чего-либо, но не являющийся таковым на самом деле».
      Оригинал
      Virtual. Unlike most computer buzzwords, this one usually holds true to its dictionary definition when it refers to hardware or software. The Random House College Dictionary defines «virtual» as «being such in force or effect, though not actually or expressly such.» [4]
      Последние несколько лет в начале каждого семестра я даю студентам определения основных терминов, используемых в моём курсе: симуляция, эмуляция и виртуализация. И каждый раз я говорю, чтобы мои слова не принимали за стопроцентную правду. Дело в том, что в одних областях технического знания эти термины зачастую трактуются противоположно тому, что принято использовать в других. Нелёгкое это дело — давать определения.

      Видимо, эту проблему заметил не только я. В своей книге Software and System Development using Virtual Platforms, вышедшей в прошлом году, мои коллеги Jakob Engblom и Daniel Aarno в первой главе вводят понятия simulation и emulation и отмечают неоднозначность их толкования в областях разработки программного обеспечения и проектирования аппаратуры.

      С беспорядком в толковании этих двух терминов я для себя разобрался и вроде бы смирился. Осталось ещё одно понятие, уже более десяти (на самом деле пятидесяти) лет не теряющее популярности — это «виртуализация». За время своего бытия в категории «buzzword» оно стало сочетаться со множеством других слов. Недавно я осознал, что термин «виртуальная машина» (ВМ) на самом деле используется для обозначения двух хоть и связанных, но различных сущностей. В этой статье я расскажу о двух классах: языковые и системные виртуальные машины. Я покажу сходства и различия между ними, их назначение, классификацию, общие и частные черты в их практической реализации.


      Читать дальше →
      • +29
      • 25k
      • 5
    • Ассемблер для задач симуляции. Часть 2: ядро симуляции

        HCF, n. Mnemonic for ‘Halt and Catch Fire’, any of several undocumented and semi-mythical machine instructions with destructive side-effects <...>
        Jargon File
        В предыдущем посте я начал рассказ об областях применения ассемблера при разработке программных моделей вычислительных систем — симуляторов. Я описал работу программного декодера, а также порассуждал о методе тестирования симулятора с помощью юнит-тестов.
        В этой статье будет рассказано, зачем программисту нужны знания о структуре машинного кода при создании не менее важной компоненты симулятора — ядра, отвечающего за моделирования отдельных инструкций.
        До сих пор обсуждение в основном касалось ассемблера гостевой системы. Пришло время рассказать об ассемблере хозяйском.
        Читать дальше →
        • +14
        • 9,7k
        • 1
      • Ассемблер для задач симуляции. Часть 1: гостевой ассемблер

          Instructions, registers, and assembler directives are always in UPPER CASE to remind you that assembly programming is a fraught endeavor
          golang.org/doc/asm
          На Хабре да и в Интернете в целом есть довольно много информации про использование языков ассемблера для всевозможных архитектур. Пролистав доступные материалы, я обнаружил, что чаще всего освещаемые в них области использования ассемблера и родственных технологий следующие:
          1. Встраиваемые (embedded) системы.
          2. Декомпиляция, обратная разработка (reverse engineering), компьютерная безопасность.
          3. Высокопроизводительные вычисления (HPC) и оптимизация программ.
          И конечно же, в каждой из этих областей существуют специфические требования, а значит свои понятия об инструментах и «свой» ассемблер. Эмбедщики смотрят в код через редактор и дебаггер, реверс-инженеры видят его в декомпиляторах вроде IDA и radare2 и отладчиках ICE, а HPC-спецы — через профилировщики, такие как Intel® VTune™ Amplifier, xperf или perf.
          И захотелось мне рассказать об ещё одной области программирования, в которой ассемблеры частые спутники. А именно — об их роли при разработке программных моделей вычислительных систем, в простонародье именуемых симуляторами.
          Читать дальше →
        • Процессоры, ядра и потоки. Топология систем

          • Tutorial
          В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.



          Используемая далее терминология используется в документации процессорам Intel. Другие архитектуры могут иметь другие названия для похожих понятий. Там, где они мне известны, я буду их упоминать.

          Цель статьи — показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).
          Читать дальше →